Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis

Abstract

Controlling surface structure at the atomic scale is paramount to developing effective catalysts. For example, the edge sites of MoS2 are highly catalytically active and are thus preferred at the catalyst surface over MoS2 basal planes, which are inert. However, thermodynamics favours the presence of the basal plane, limiting the number of active sites at the surface. Herein, we engineer the surface structure of MoS2 to preferentially expose edge sites to effect improved catalysis by successfully synthesizing contiguous large-area thin films of a highly ordered double-gyroid MoS2 bicontinuous network with nanoscaled pores. The high surface curvature of this catalyst mesostructure exposes a large fraction of edge sites, which, along with its high surface area, leads to excellent activity for electrocatalytic hydrogen evolution. This work elucidates how morphological control of materials at the nanoscale can significantly impact the surface structure at the atomic scale, enabling new opportunities for enhancing surface properties for catalysis and other important technological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Structural characterization of the double-gyroid morphology.
Figure 3: Spectroscopic characterization of double-gyroid MoS2 from various Mo electrodeposition times.
Figure 4: SEM images of double-gyroid MoS2 films.
Figure 5: TEM images of double-gyroid MoS2.
Figure 6: HER activity of double-gyroid MoS2.

Similar content being viewed by others

References

  1. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  2. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  3. Wilcoxon, J. P. & Samara, G. A. Strong quantum-size effects in layered semiconductor: MoS2 nanoclusters. Phys. Rev. B 51, 7299–7302 (1995).

    Article  CAS  Google Scholar 

  4. Kis, A. et al. Shear and Young’s moduli of MoS2 nanotube ropes. Adv. Mater. 15, 733–736 (2003).

    Article  CAS  Google Scholar 

  5. Rosentsveig, R. et al. Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36, 175–182 (2009).

    Article  CAS  Google Scholar 

  6. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  7. Chen, J., Li, S-L., Xu, Q. & Tanaka, K. Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation. Chem. Commun. 1722–1723 (2002).

  8. Dominko, R. et al. Dichalcogenide nanotube electrodes for Li-ion batteries. Adv. Mater. 14, 1531–1534 (2002).

    Article  CAS  Google Scholar 

  9. Topsøe, H., Clausen, B. S. & Massoth, F. E. Hydrotreating Catalysis, Science and Technology Vol. 11 (Springer, 1996).

    Google Scholar 

  10. Chhowalla, M. & Amaratunga, G. A. J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164–167 (2000).

    Article  CAS  Google Scholar 

  11. Wilcoxon, J. P., Thurston, T. R. & Martin, J. E. Applications of metal and semiconductor nanoclusters as thermal and photo-catalysts. Nanostruct. Mater. 12, 993–997 (1999).

    Article  Google Scholar 

  12. Abrams, B. L. & Wilcoxon, J. P. Nanosize semiconductors for photooxidation. Crit. Rev. Solid State Mater. Sci. 30, 153–182 (2005).

    Article  CAS  Google Scholar 

  13. Kline, G., Kam, K. K., Ziegler, R. & Parkinson, B. A. Further studies of the photoelectrochemical properties of the group VI transition metal dichalcogenides. Sol. Energy Mater. 6, 337–350 (1982).

    Article  CAS  Google Scholar 

  14. Gourmelon, E. et al. MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 46, 115–121 (1997).

    Article  CAS  Google Scholar 

  15. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  Google Scholar 

  17. Merki, D., Fierro, S., Vrubel, H. & Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    Article  CAS  Google Scholar 

  18. Chen, Z. et al. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011).

    Article  CAS  Google Scholar 

  19. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  20. Bonde, J., Moses, P. G., Jaramillo, T. F., Norskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2008).

    Article  CAS  Google Scholar 

  21. Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008).

    Article  CAS  Google Scholar 

  22. Kanda, S., Akita, T., Fujishima, M. & Tada, H. Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism. J. Colloid Interface Sci. 354, 607–610 (2011).

    Article  CAS  Google Scholar 

  23. Sobczynski, A. Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors. J. Catal. 131, 156–166 (1991).

    Article  CAS  Google Scholar 

  24. Albu-Yaron, A. et al. MoS2 hybrid nanostructures: From octahedral to quasi-spherical shells within individual nanoparticles. Angew. Chem. Int. Ed. 50, 1810–1814 (2011).

    Article  CAS  Google Scholar 

  25. Wei, T. C. & Hillhouse, H. W. Mass transport and electrode accessibility through periodic self-assembled nanoporous silica thin films. Langmuir 23, 5689–5699 (2007).

    Article  CAS  Google Scholar 

  26. Shi, Y. F., Wan, Y., Liu, R. L., Tu, B. & Zhao, D. Y. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J. Am. Chem. Soc. 129, 9522–9531 (2007).

    Article  CAS  Google Scholar 

  27. Skrabalak, S. E. & Suslick, K. S. Porous MoS2 synthesized by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127, 9990–9991 (2005).

    Article  CAS  Google Scholar 

  28. Alonso, G. et al. Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates. J. Catal. 208, 359–369 (2002).

    Article  CAS  Google Scholar 

  29. Polyakov, M. et al. Carbon-stabilized mesoporous MoS2—Structural and surface characterization with spectroscopic and catalytic tools. Catal. Commun. 12, 231–237 (2010).

    Article  CAS  Google Scholar 

  30. Walcarius, A., Sibottier, E., Etienne, M. & Ghanbaja, J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nature Mater. 6, 602–608 (2007).

    Article  CAS  Google Scholar 

  31. Nicole, L., Boissiere, C., Grosso, D., Quach, A. & Sanchez, C. Mesostructured hybrid organic-inorganic thin films. J. Mater. Chem. 15, 3598–3627 (2005).

    Article  CAS  Google Scholar 

  32. Tate, M. P., Urade, V. N., Gaik, S. J., Muzzillo, C. P. & Hillhouse, H. W. How to dip-coat and spin-coat nanoporous double-gyroid silica films with EO19–PO43–EO19 surfactant (Pluronic P84) and know it using a powder x-ray diffractometer. Langmuir 26, 4357–4367 (2010).

    Article  CAS  Google Scholar 

  33. McEvoy, T. M. & Stevenson, K. J. Elucidation of the electrodeposition mechanism of molybdenum oxide from iso- and peroxo-polymolybdate solutions. J. Mater. Res. 19, 429–438 (2004).

    Article  CAS  Google Scholar 

  34. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  35. Windom, B. C., Sawyer, W. G. & Hahn, D. W. A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42, 301–310 (2011).

    Article  CAS  Google Scholar 

  36. Porod, G. in Small Angle X-Ray Scattering (eds Glatter, O. & Kratky, O.) (Academic, 1982).

    Google Scholar 

  37. Tributsch, H. & Bennett, J. C. Electrochemistry and photochemistry of MoS2 layer crystals. J. Electroanal. Chem. 81, 97–111 (1977).

    Article  CAS  Google Scholar 

  38. Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete Cubane-type Mo3S4 (+4) electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    Article  CAS  Google Scholar 

  39. Yadgarov, L. et al. Controlled doping of MS2 (M = W, Mo) nanotubes and fullerene-like nanoparticles. Angew. Chem. Int. Ed. 51, 1148–1151 (2012).

    Article  CAS  Google Scholar 

  40. Chianelli, R. R. et al. The reactivity of MoS2 single crystal edge planes. J. Catal. 92, 56–63 (1985).

    Article  CAS  Google Scholar 

  41. Prins, R. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H. & Weitkamp, S. F.) 2695–2718 (Wiley, 2008).

    Google Scholar 

  42. Tuxen, A. et al. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 4, 4677–4682 (2010).

    Article  CAS  Google Scholar 

  43. Lauritsen, J. V. et al. Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters. Nanotechnology 14, 385–389 (2003).

    Article  CAS  Google Scholar 

  44. Lauritsen, J. V. et al. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. J. Catal. 224, 94–106 (2004).

    Article  CAS  Google Scholar 

  45. Prins, R., de Beer, V. H. J. & Somorjai, G. A. Structure and Function of the Catalyst and the Promoter in Co–Mo Hydrotreating Catalysts. Catal. Rev. Sci. Eng. 31, 1–41 (1989).

    Article  CAS  Google Scholar 

  46. Topsøe, H. & Clausen, B. S. Importance of Co–Mo–S type structures in hydrodesulfurization. Catal. Rev.: Sci. Eng. 26, 395–420 (1984).

    Article  Google Scholar 

  47. Kibsgaard, J. et al. Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. J. Catal. 272, 195–203 (2010).

    Article  CAS  Google Scholar 

  48. Lauritsen, J. V. et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007).

    Article  CAS  Google Scholar 

  49. Besenbacher, F. et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catal. Today 130, 86–96 (2008).

    Article  CAS  Google Scholar 

  50. Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All physical and electrochemical characterization was supported by the Center on Nanostructuring for Efficient Energy Conversion at Stanford University, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001060. Early stage development of the synthetic procedure to obtain double-gyroid MoS2 was supported by the US Department of Energy, Office of Energy Efficiency & Renewable Energy, under subcontract NFT-9-88567-01 under Prime Contract No. DE-AC36-08GO28308. We thank J. Opatkiewicz for assistance with Raman spectroscopy measurements and BASF for generously providing the surfactant Pluronic P84. We also thank J. Benck and P. C. K. Vesborg for helpful discussion. J.K. gratefully acknowledges the Villum Kann Rasmussen Foundation for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and Z.C. carried out synthesis of the double-gyroid MoS2 and performed XPS, XRD, SEM, Raman and electrochemical measurements. B.N.R. performed TEM imaging. J.K., Z.C. and T.F.J. conceived the study and wrote the manuscript.

Corresponding author

Correspondence to Thomas F. Jaramillo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1740 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibsgaard, J., Chen, Z., Reinecke, B. et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Mater 11, 963–969 (2012). https://doi.org/10.1038/nmat3439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing