Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus

Abstract

Cold exposure may be a potential therapy for diabetes by increasing brown adipose tissue (BAT) mass and activity. Here we report that 10 d of cold acclimation (14–15 °C) increased peripheral insulin sensitivity by 43% in eight type 2 diabetes subjects. Basal skeletal muscle GLUT4 translocation markedly increased, without effects on insulin signaling or AMP-activated protein kinase (AMPK) activation and only a minor increase in BAT glucose uptake.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glucose uptake in the supraclavicular BAT region before and after cold acclimation and WAT beiging.
Figure 2: Insulin sensitivity and skeletal muscle GLUT4 localization before and after cold acclimation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. van Marken Lichtenbelt, W.D. et al. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  Google Scholar 

  2. Virtanen, K.A. et al. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  3. Cypess, A.M. et al. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  Google Scholar 

  4. Bartelt, A. et al. Nat. Med. 17, 200–205 (2011).

    Article  CAS  Google Scholar 

  5. Stanford, K.I. et al. J. Clin. Invest. 123, 215–223 (2013).

    Article  CAS  Google Scholar 

  6. Townsend, K.L. & Tseng, Y.H. Trends Endocrinol. Metab. 25, 168–177 (2014).

    Article  CAS  Google Scholar 

  7. van der Lans, A.A. et al. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  CAS  Google Scholar 

  8. Yoneshiro, T. et al. J. Clin. Invest. 123, 3404–3408 (2013).

    Article  CAS  Google Scholar 

  9. Blondin, D.P. et al. J. Clin. Endocrinol. Metab. 99, E438–E446 (2014).

    Article  CAS  Google Scholar 

  10. Ouellet, V. et al. J. Clin. Invest. 122, 545–552 (2012).

    Article  Google Scholar 

  11. Yoneshiro, T. et al. Obesity (Silver Spring) 19, 13–16 (2011).

    Article  Google Scholar 

  12. Hanssen, M.J. et al. Diabetologia 58, 586–595 (2015).

    Article  CAS  Google Scholar 

  13. Meex, R.C. et al. Diabetes 59, 572–579 (2010).

    Article  CAS  Google Scholar 

  14. Storlien, L., Oakes, N.D. & Kelley, D.E. Proc. Nutr. Soc. 63, 363–368 (2004).

    Article  CAS  Google Scholar 

  15. Galgani, J.E. et al. Diabetes 57, 841–845 (2008).

    Article  CAS  Google Scholar 

  16. Schrauwen-Hinderling, V.B. et al. Diabetologia 50, 113–120 (2007).

    Article  CAS  Google Scholar 

  17. Bal, N.C. et al. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  Google Scholar 

  18. Ruderman, N.B., Carling, D., Prentki, M. & Cacicedo, J.M. J. Clin. Invest. 123, 2764–2772 (2013).

    Article  CAS  Google Scholar 

  19. Sato, M. et al. Diabetes 63, 4115–4129 (2014).

    Article  CAS  Google Scholar 

  20. Wang, G.X. et al. Nat. Med. 20, 1436–1443 (2014).

    Article  CAS  Google Scholar 

  21. Bergström, J., Hultman, E. & Roch-Norlund, A.E. Scand. J. Clin. Lab. Invest. 29, 231–236 (1972).

    Article  Google Scholar 

  22. Vosselman, M.J. et al. Diabetes 61, 3106–3113 (2012).

    Article  CAS  Google Scholar 

  23. Vosselman, M.J. et al. Am. J. Clin. Nutr. 98, 57–64 (2013).

    Article  CAS  Google Scholar 

  24. DeFronzo, R.A., Tobin, J.D. & Andres, R. Am. J. Physiol. 237, E214–E223 (1979).

    CAS  Google Scholar 

  25. Steele, R. Ann. NY Acad. Sci. 82, 420–430 (1959).

    Article  CAS  Google Scholar 

  26. Phielix, E. & Mensink, M. Physiol. Behav. 94, 252–258 (2008).

    Article  CAS  Google Scholar 

  27. Frayn, K.N. J. Appl. Physiol. 55, 628–634 (1983).

    Article  CAS  Google Scholar 

  28. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  29. Irizarry, R.A. et al. Nucleic Acids Res. 31, e15 (2003).

    Article  Google Scholar 

  30. Dai, M. et al. Nucleic Acids Res. 33, e175 (2005).

    Article  Google Scholar 

  31. Sartor, M.A. et al. BMC Bioinformatics 7, 538 (2006).

    Article  Google Scholar 

  32. Phielix, E. et al. Diabetes 57, 2943–2949 (2008).

    Article  CAS  Google Scholar 

  33. Hoeks, J. et al. Diabetes 59, 2117–2125 (2010).

    Article  CAS  Google Scholar 

  34. Koopman, R., Schaart, G. & Hesselink, M.K. Histochem. Cell Biol. 116, 63–68 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Jardon, E. Broeders, D. Van Moorsel, K. Jansen, M. Visser, R. Hensgens and R. Wierts (Maastricht University Medical Center) for assistance during the experiments and H. Aydeniz, E. Kornips, J. Stegen, W. Sluijsmans, L. Donselaar (Maastricht University Medical Center), W. Wickenhagen (VU University Medical Center Amsterdam) and M. Ackermans (Academic Medical Center Amsterdam) for assistance with the biochemical analyses. The technical support of P. Schoffelen, L. Wouters and M. Souren (Maastricht University Medical Center) is highly appreciated. This work was supported by the EU FP7 project DIABAT (HEALTH-F2-2011-278373 to W.D.v.M.L.) and by the Netherlands Organization for Scientific Research (NWO) (TOP 91209037 to W.D.v.M.L). J.H. is supported by an NWO Vidi grant for innovative research (grant 917.14.358).

Author information

Authors and Affiliations

Authors

Contributions

M.J.W.H. was responsible for study design, data acquisition and data analysis and wrote the manuscript. J.H. contributed to the study design, data acquisition and data analysis. B.B. contributed to data analysis. A.A.J.J.v.d.L. contributed to the study design and data acquisition. J.J.v.d.D., M.V.B., M.K.C.H. and S.K. contributed to data acquisition and data analysis. G.S., J.A.J. and B.H. contributed to data acquisition. F.M.M., W.D.v.M.L. and P.S. contributed to the study design and interpretation of data. All authors contributed to the critical revision of the manuscript and approved the final version.

Corresponding author

Correspondence to Patrick Schrauwen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 & Supplementary Tables 1–4 (PDF 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanssen, M., Hoeks, J., Brans, B. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21, 863–865 (2015). https://doi.org/10.1038/nm.3891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3891

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research