Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges

Abstract

Thus far, the focus of personalized medicine has been the prevention and treatment of conditions that affect adults. Although advances in genetic technology have been applied more frequently to prenatal diagnosis than to fetal treatment, genetic and genomic information is beginning to influence pregnancy management. Recent developments in sequencing the fetal genome combined with progress in understanding fetal physiology using gene expression arrays indicate that we could have the technical capabilities to apply an individualized medicine approach to the fetus. Here I review recent advances in prenatal genetic diagnostics, the challenges associated with these new technologies and how the information derived from them can be used to advance fetal care. Historically, the goal of prenatal diagnosis has been to provide an informed choice to prospective parents. We are now at a point where that goal can and should be expanded to incorporate genetic, genomic and transcriptomic data to develop new approaches to fetal treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the three major current techniques for analyzing fetal chromosomes.
Figure 2: Cell-free DNA analysis to diagnose fetal disorders.
Figure 3: A potential future diagnostic and treatment strategy for Down's syndrome.

Similar content being viewed by others

References

  1. Khoury, M.J. et al. The scientific foundation for personal genomics: recommendations from an NIH-CDC multidisciplinary workshop. Genet. Med. 11, 559–567 (2009).

    CAS  Google Scholar 

  2. Ferguson-Smith, M.A. & Bianchi, D.W. Prenatal diagnosis: past, present, and future. Prenat. Diagn. 30, 601–604 (2010).

    Google Scholar 

  3. Wolfberg, A.J. Genes on the web-direct-to-consumer marketing of genetic testing. N. Engl. J. Med. 355, 543–545 (2006).

    CAS  Google Scholar 

  4. Bianchi, D.W. At-home fetal DNA gender testing: caveat emptor. Obstet. Gynecol. 107, 216–218 (2006).

    Google Scholar 

  5. Hawkins, A.K. & Ho, A. Genetic counseling and the ethical issues around direct to consumer genetic testing. J. Genet. Counsel. 21, 367–373 (2012).

  6. Miller, D.T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    CAS  Google Scholar 

  7. Friedman, J.M. High-resolution array genomic hybridization in prenatal diagnosis. Prenat. Diagn. 29, 20–28 (2009).

    CAS  Google Scholar 

  8. Mailman, M.D. et al. The NCBI dbGAP database of genotypes and phenotypes. Nat. Genet. 39, 1181–1186 (2007).

    CAS  Google Scholar 

  9. Firth, H.V. et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    CAS  Google Scholar 

  10. Anonymous. ACOG Committee Opinion No. 446: array comparative genomic hybridization in prenatal diagnosis. Obstet. Gynecol. 114, 1161–1163 (2009).

  11. Schaeffer, A.J. et al. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am. J. Hum. Genet. 74, 1168–1174 (2004).

    CAS  Google Scholar 

  12. Raca, G. et al. Array-based comparative genomic hybridization (aCGH) in the genetic evaluation of stillbirth. Am. J. Med. Genet. A 149A, 2437–2443 (2009).

    CAS  Google Scholar 

  13. Harris, R.A. et al. Genome-wide array-based copy number profiling in human placentas from unexplained stillbirths. Prenat. Diagn. 31, 932–944 (2011).

    Google Scholar 

  14. Shaffer, L.G. et al. Comparison of microarray-based detection rates for cytogenetic abnormalities in prenatal and neonatal specimens. Prenat. Diagn. 28, 789–795 (2008).

    Google Scholar 

  15. Coppinger, J. et al. Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray. Prenat. Diagn. 29, 1156–1166 (2009).

    Google Scholar 

  16. Van den Veyver, I.B. et al. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat. Diagn. 29, 29–39 (2009).

    CAS  Google Scholar 

  17. Park, J.H. et al. Application of a target array comparative genomic hybridization to prenatal diagnosis. BMC Med. Genet. 11, 102 (2010).

    Google Scholar 

  18. Kleeman, L. et al. Use of array comparative genomic hybridization for prenatal diagnosis of fetuses with sonographic anomalies and normal metaphase karyotype. Prenat. Diagn. 29, 1213–1217 (2009).

    Google Scholar 

  19. Tyreman, M. et al. High resolution array analysis: diagnosing pregnancies with abnormal ultrasound findings. J. Med. Genet. 46, 531–541 (2009).

    CAS  Google Scholar 

  20. Faas, B.H. et al. Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250k SNP array analysis. J. Med. Genet. 47, 586–594 (2010).

    CAS  Google Scholar 

  21. D'Amours, G. et al. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin. Genet. 81, 128–141 (2012).

    CAS  Google Scholar 

  22. Maya, I. et al. Diagnostic utility of array-based comparative genomic hybridization (aCGH) in a prenatal setting. Prenat. Diagn. 30, 1131–1137 (2010).

    Google Scholar 

  23. Lo, Y.M. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 350, 485–487 (1997).

    CAS  Google Scholar 

  24. Tjoa, M.L., Cindrova-Davies, T., Spasic-Boskovic, O., Bianchi, D.W. & Burton, G.J. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am. J. Pathol. 169, 400–404 (2006).

    CAS  Google Scholar 

  25. Alberry, M. et al. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat. Diagn. 27, 415–418 (2007).

    CAS  Google Scholar 

  26. Bischoff, F.Z., Lewis, D.E. & Simpson, J.L. Cell-free fetal DNA in maternal blood: kinetics, source and structure. Hum. Reprod. Update 11, 59–67 (2005).

    CAS  Google Scholar 

  27. Masuzaki, H. et al. Detection of cell free placental DNA in maternal plasma: direct evidence from three cases of confined placental mosaicism. J. Med. Genet. 41, 289–292 (2004).

    CAS  Google Scholar 

  28. Sekizawa, A. et al. Evaluation of bidirectional transfer of plasma DNA through placenta. Hum. Genet. 113, 307–310 (2003).

    CAS  Google Scholar 

  29. Chim, S.S. et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl. Acad. Sci. USA 102, 14753–14758 (2005).

    CAS  Google Scholar 

  30. Chan, K.C. et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin. Chem. 52, 2211–2218 (2006).

    CAS  Google Scholar 

  31. Bennett, P.R. et al. Prenatal determination of fetal RhD type by DNA amplification. N. Engl. J. Med. 329, 607–610 (1993).

    CAS  Google Scholar 

  32. Lo, Y.M. et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N. Engl. J. Med. 339, 1734–1738 (1998).

    CAS  Google Scholar 

  33. Finning, K.M., Martin, P.G., Soothill, P.W. & Avent, N.D. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion 42, 1079–1085 (2002).

    CAS  Google Scholar 

  34. Bianchi, D.W., Avent, N.D., Costa, J.M. & van der Schoot, E.M. Noninvasive prenatal diagnosis of fetal Rhesus D: ready for prime(r) time. Obstet. Gynecol. 106, 841–844 (2005).

    Google Scholar 

  35. Scheffer, P.G., van der Schoot, C.E., Page-Christiaens, G.C. & de Haas, M. Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7-year clinical experience. BJOG 118, 1340–1348 (2011).

    CAS  Google Scholar 

  36. Daniels, G., Finning, K. & Martin, P. Noninvasive fetal blood grouping: present and future. Clin. Lab. Med. 30, 431–442 (2010).

    Google Scholar 

  37. Clausen, F.B. et al. Report of the first nationally implemented clinical routine screening for fetal RHD in D- pregnant women to ascertain the requirements for antenatal D prophylaxis. Transfusion 52, 752–758 (2012).

    CAS  Google Scholar 

  38. Devaney, S.A., Palomaki, G.E., Scott, J.A. & Bianchi, D.W. Noninvasive fetal sex determination using cell-free fetal DNA. J. Am. Med. Assoc. 306, 627–636 (2011).

    CAS  Google Scholar 

  39. Hill, M. et al. Non-invasive prenatal determination of fetal sex: translating research into clinical practice. Clin. Genet. 80, 68–75 (2011).

    CAS  Google Scholar 

  40. ACOG Committee on Practice Bulletins. ACOG practice bulletin no. 77: screening for fetal chromosomal abnormalities. Obstet. Gynecol. 109, 217–227 (2007).

  41. Bianchi, D.W. et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat. Diagn. 22, 609–615 (2002).

    CAS  Google Scholar 

  42. Bianchi, D.W. & Hanson, J. Sharpening the tools: a summary of a National Institutes of Health workshop on new technologies for detection of fetal cells in maternal blood for early prenatal diagnosis. J. Matern. Fetal Neonatal Med. 19, 199–207 (2006).

    Google Scholar 

  43. Lo, Y.M. Noninvasive prenatal detection of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis: a review of the current state of the art. BJOG 116, 152–157 (2009).

    CAS  Google Scholar 

  44. Lo, Y.M. et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat. Med. 13, 218–223 (2007).

    CAS  Google Scholar 

  45. Tsui, N.B. et al. Synergy of total PLAC4 RNA concentration and measurement of the RNA single-nucleotide polymorphism allelic ratio for the noninvasive prenatal detection of trisomy 21. Clin. Chem. 56, 73–81 (2010).

    CAS  Google Scholar 

  46. Lo, Y.M. et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc. Natl. Acad. Sci. USA 104, 13116–13121 (2007).

    CAS  Google Scholar 

  47. Fan, H.C. & Quake, S.R. Detection of aneuploidy with digital polymerase chain reaction. Anal. Chem. 79, 7576–7579 (2007).

    CAS  Google Scholar 

  48. Fan, H.C., Blumenfeld, Y.J., Chitkara, U., Hudgins, L. & Quake, S.R. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. USA 105, 16266–16271 (2008).

    CAS  Google Scholar 

  49. Chiu, R.W. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl. Acad. Sci. USA 105, 20458–20463 (2008).

    CAS  Google Scholar 

  50. Chiu, R.W. et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. Br. Med. J. 342, c7401 (2011).

    Google Scholar 

  51. Ehrich, M. et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am. J. Obstet. Gynecol. 204, 205.e1–11 (2011).

    Google Scholar 

  52. Sehnert, A.J. et al. Optimal detection of fetal chromosomal abnormalities by massively parallel sequencing of cell-free fetal DNA from maternal blood. Clin. Chem. 57, 1042–1049 (2011).

    CAS  Google Scholar 

  53. Chen, E.Z. et al. Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing. PLoS ONE 6, e21791 (2011).

    CAS  Google Scholar 

  54. Palomaki, G.E. et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet. Med. 13, 913–920 (2011).

    CAS  Google Scholar 

  55. Palomaki, G.E. et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet. Med. 14, 296–305 (2012).

    CAS  Google Scholar 

  56. Bianchi, D.W. et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet. Gynecol. 119, 890–901 (2012).

    CAS  Google Scholar 

  57. Sparks, A.B. et al. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat. Diagn. 32, 3–9 (2012).

    CAS  Google Scholar 

  58. Ashoor, G., Syngelaki, A., Wagner, M., Birdir, C. & Nicolaides, K.H. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 206, 322.e1–5 (2012).

    Google Scholar 

  59. Sparks, A.B., Struble, C.A., Wang, E.T., Song, K. & Oliphant, A. Non-invasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 206, 319.e1–9 (2012).

    Google Scholar 

  60. Lun, F.M. et al. Noninvasive prenatal diagnosis of a case of Down syndrome due to Robertsonian translocation by massively parallel sequencing of maternal plasma DNA. Clin. Chem. 57, 917–919 (2011).

    CAS  Google Scholar 

  61. Benn, P. et al. Prenatal detection of Down syndrome using massively parallel sequencing (MPS): a rapid response statement from a committee on behalf of the Board of the International Society for Prenatal Diagnosis, 24 October 2011. Prenat. Diagn. 32, 1–2 (2012).

    Google Scholar 

  62. Lui, Y.Y. et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin. Chem. 48, 421–427 (2002).

    CAS  Google Scholar 

  63. Lo, Y.M. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2, 61ra91 (2010).

    CAS  Google Scholar 

  64. Fan, H.C. et al. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin. Chem. 56, 1279–1286 (2010).

    CAS  Google Scholar 

  65. Chan, K.C. et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin. Chem. 50, 88–92 (2004).

    CAS  Google Scholar 

  66. Lun, F.M. et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin. Chem. 54, 1664–1672 (2008).

    CAS  Google Scholar 

  67. Peters, D. et al. Noninvasive prenatal diagnosis of a fetal microdeletion syndrome. N. Engl. J. Med. 365, 1847–1848 (2011).

    CAS  Google Scholar 

  68. Lun, F.M. et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc. Natl. Acad. Sci. USA 105, 19920–19925 (2008).

    CAS  Google Scholar 

  69. Barrett, A.N., McDonnell, T.C., Chan, K.C. & Chitty, L.S. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin. Chem. (2012).

  70. Tsui, N.B. et al. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood 117, 3684–3691 (2011).

    CAS  Google Scholar 

  71. Lo, Y.M. et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet. 62, 768–775 (1998).

    CAS  Google Scholar 

  72. Chiu, R.W. et al. Time profile of appearance and disappearance of circulating placenta-derived mRNA in maternal plasma. Clin. Chem. 52, 313–316 (2006).

    CAS  Google Scholar 

  73. Poon, L.L., Leung, T.N., Lau, T.K. & Lo, Y.M. Presence of fetal RNA in maternal plasma. Clin. Chem. 46, 1832–1834 (2000).

    CAS  Google Scholar 

  74. Tsui, N.B., Ng, E.K. & Lo, Y.M. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 48, 1647–1653 (2002).

    CAS  Google Scholar 

  75. Ng, E.K. et al. mRNA of placental origin is readily detectable in maternal plasma. Proc. Natl. Acad. Sci. USA 100, 4748–4753 (2003).

    CAS  Google Scholar 

  76. Heung, M.M. et al. Placenta-derived fetal specific mRNA is more readily detectable in maternal plasma than in whole blood. PLoS ONE 4, e5858 (2009).

    Google Scholar 

  77. Maron, J.L. et al. Gene expression analysis in pregnant women and their infants identifies unique fetal biomarkers that circulate in maternal blood. J. Clin. Invest. 117, 3007–3019 (2007).

    CAS  Google Scholar 

  78. Bianchi, D.W., Maron, J.L. & Johnson, K.L. Insights into fetal and neonatal development through analysis of cell-free RNA in body fluids. Early Hum. Dev. 86, 747–752 (2010).

    Google Scholar 

  79. Luo, S.S. et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 81, 717–729 (2009).

    CAS  Google Scholar 

  80. Pineles, B.L. et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am. J. Obstet. Gynecol. 196, 261.e1–6 (2007).

    Google Scholar 

  81. Mouillet, J.F. et al. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta 31, 781–784 (2010).

    CAS  Google Scholar 

  82. Chim, S.S. et al. Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 54, 482–490 (2008).

    CAS  Google Scholar 

  83. Miura, K. et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin. Chem. 56, 1767–1771 (2010).

    CAS  Google Scholar 

  84. Kotlabova, K., Doucha, J. & Hromadnikova, I. Placental-specific microRNA in maternal circulation-identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J. Reprod. Immunol. 89, 185–191 (2011).

    CAS  Google Scholar 

  85. Larrabee, P.B. et al. Global gene expression analysis of the living human fetus using cell-free messenger RNA in amniotic fluid. J. Am. Med. Assoc. 293, 836–842 (2005).

    CAS  Google Scholar 

  86. Slonim, D.K. et al. Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc. Natl. Acad. Sci. USA 106, 9425–9429 (2009).

    CAS  Google Scholar 

  87. Koide, K. et al. Transcriptomic analysis of cell-free fetal RNA suggests a specific molecular phenotype in trisomy 18. Hum. Genet. 129, 295–305 (2011).

    CAS  Google Scholar 

  88. Zana, M., Janka, Z. & Kalman, J. Oxidative stress: a bridge between Down's syndrome and Alzheimer's disease. Neurobiol. Aging 28, 648–676 (2007).

    CAS  Google Scholar 

  89. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  Google Scholar 

  90. FitzPatrick, D.R. et al. Transcriptome analysis of human autosomal trisomy. Hum. Mol. Genet. 11, 3249–3256 (2002).

    CAS  Google Scholar 

  91. Chung, I.H. et al. Gene expression analysis of cultured amniotic fluid cell with Down syndrome by DNA microarray. J. Korean Med. Sci. 20, 82–87 (2005).

    CAS  Google Scholar 

  92. Rozovski, U. et al. Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype. Hum. Reprod. 22, 2538–2545 (2007).

    CAS  Google Scholar 

  93. Hui, L. et al. The amniotic fluid transcriptome: a source of novel information about human fetal development. Obstet. Gynecol. 119, 111–118 (2012).

    CAS  Google Scholar 

  94. Tsui, N.B. et al. Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J. Med. Genet. 41, 461–467 (2004).

    CAS  Google Scholar 

  95. Purwosunu, Y. et al. Cell-free mRNA concentrations of CRH, PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia. Prenat. Diagn. 27, 772–777 (2007).

    CAS  Google Scholar 

  96. Okazaki, S. et al. Placenta-derived, cellular messenger RNA expression in the maternal blood of preeclamptic women. Obstet. Gynecol. 110, 1130–1136 (2007).

    CAS  Google Scholar 

  97. Miura, K. et al. The possibility of microarray-based analysis using cell-free placental mRNA in maternal plasma. Prenat. Diagn. 30, 849–861 (2010).

    CAS  Google Scholar 

  98. Miura, K. et al. Increased levels of cell-free placenta mRNA in a subgroup of placenta previa that needs hysterectomy. Prenat. Diagn. 28, 805–809 (2008).

    Google Scholar 

  99. Ng, E.K. et al. The concentration of circulating corticotrophin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin. Chem. 49, 727–731 (2003).

    CAS  Google Scholar 

  100. Løset, M. et al. A transcriptional profile of the decidua in preeclampsia. Am. J. Obstet. Gynecol. 204, 84.e1–27 (2011).

    Google Scholar 

  101. Sitras, V., Paulssen, R., Leirvik, J., Vartun, A. & Acharya, G. Placental gene expression profile in intrauterine growth restriction due to placental insufficiency. Reprod. Sci. 16, 701–711 (2009).

    CAS  Google Scholar 

  102. Madsen-Bouterse, S.A. et al. The transcriptome of the fetal inflammatory response syndrome. Am. J. Reprod. Immunol. 63, 73–92 (2010).

    CAS  Google Scholar 

  103. Gracie, S.K. et al. All Our Babies Cohort Study: recruitment of a cohort to predict women at risk of preterm birth through the examination of gene expression profiles and the environment. BMC Pregnancy Childbirth 10, 87 (2010).

    Google Scholar 

  104. Guttmacher, A.E. et al. Educating health-care professionals about genetics and genomics. Nat. Rev. Genet. 8, 151–157 (2007).

    CAS  Google Scholar 

  105. Wapner, R. A multicenter, prospective, masked comparison of chromosomal microarray with standard karyotyping for routine and high risk prenatal diagnosis. Am. J. Obstet. Gynecol. 206, S2 (2012).

    Google Scholar 

  106. Susman, M.R. et al. Using population-based data to predict the impact of introducing noninvasive prenatal diagnosis for Down syndrome. Genet. Med. 12, 298–303 (2010).

    Google Scholar 

  107. Benn, P.A. & Chapman, A.R. Practical and ethical considerations of noninvasive prenatal diagnosis. J. Am. Med. Assoc. 301, 2154–2156 (2009).

    Google Scholar 

  108. Hill, M. et al. Incremental cost of non-invasive prenatal diagnosis versus invasive prenatal diagnosis of fetal sex in England. Prenat. Diagn. 31, 267–273 (2011).

    Google Scholar 

  109. Liao, G.J. et al. Targeted massively parallel sequencing of maternal plasma DNA permits efficient and unbiased detection of fetal alleles. Clin. Chem. 57, 92–101 (2011).

    CAS  Google Scholar 

  110. Papageorgiou, E.A. et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat. Med. 17, 510–513 (2011).

    CAS  Google Scholar 

  111. Ghanta, S. et al. Non-invasive prenatal detection of trisomy 21 using tandem single nucleotide polymorphisms. PLoS ONE 5, e13184 (2010).

    Google Scholar 

  112. Benn, P.A. & Chapman, A.R. Ethical challenges in providing noninvasive prenatal diagnosis. Curr. Opin. Obstet. Gynecol. 22, 128–134 (2010).

    Google Scholar 

  113. Beaudet, A.L. Ethical issues raised by common copy number variants and single nucleotide polymorphisms of certain and uncertain significance in general medical practice. Genome Med. 2, 42 (2010).

    Google Scholar 

  114. Greely, H.T. Get ready for the flood of fetal gene screening. Nature 469, 289–291 (2011).

    CAS  Google Scholar 

  115. Deans, Z. & Newson, A.J. Should non-invasiveness change informed consent procedures for prenatal diagnosis? Health Care Anal. 19, 122–132 (2011).

    Google Scholar 

  116. Hall, A., Bostanci, A. & Wright, C.F. Non-invasive prenatal diagnosis using cell-free fetal DNA technology: applications and implications. Public Health Genomics 13, 246–255 (2010).

    Google Scholar 

  117. Massingham, L.J. et al. Proof of concept study to assess fetal gene expression in amniotic fluid by nanoarray PCR. J. Mol. Diagn. 13, 565–570 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank D. Walt, E. Norwitz, J. Maron and L. Hui for their critical reading of the manuscript and their suggestions. In addition, she is grateful for the administrative support provided by R. Forman. The author's time and effort in writing this manuscript was partially supported by the US National Institutes of Health grant HD42053-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana W Bianchi.

Ethics declarations

Competing interests

D.W.B. is Chair of the Clinical Advisory Board of Verinata Health, Inc. and receives honoraria and equity options in the company for this role.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, D. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges. Nat Med 18, 1041–1051 (2012). https://doi.org/10.1038/nm.2829

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2829

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research