Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite

Abstract

Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cascade Arc regional map and Lassen sample locations.
Figure 2: Melt inclusion compositions and slab surface temperatures.
Figure 3: Hydrogen isotopes: measured values and model results.

Similar content being viewed by others

References

  1. Kirby, S. H., Engdahl, E. R. & Villaseñor, A. Warm-slab subduction as a global process. The Cascadia Subduction Zone and related subduction systems–Seismic structure, intraslab earthquakes and processes, and earthquake hazards. USGS Open-File Rep. 328, 79–80 (2002).

    Google Scholar 

  2. Wada, I. & Wang, K. Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones. Geochem. Geophys. Geosyst. 10, 1–36 (2009).

    Article  Google Scholar 

  3. Wilson, D. S. The Juan de Fuca plate and slab—isochron structure and Cenozoic plate motions. USGS Open-File Rep. 328, 9–12 (2002).

    Google Scholar 

  4. Rondenay, S., Abers, G. A. & Van Keken, P. E. Seismic imaging of subduction zone metamorphism. Geology 36, 275–278 (2008).

    Article  Google Scholar 

  5. Abers, G. A. et al. Imaging the source region of Cascadia tremor and intermediate-depth earthquakes. Geology 37, 1119–1122 (2009).

    Article  Google Scholar 

  6. Van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).

    Article  Google Scholar 

  7. Till, C. B., Grove, T. L. & Withers, A. C. The beginnings of hydrous mantle wedge melting. Contrib. Mineral. Petrol. 163, 669–688 (2012).

    Article  Google Scholar 

  8. Ruscitto, D. M., Wallace, P. J., Johnson, E. R., Kent, A. J. R. & Bindeman, I. N. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth Planet. Sci. Lett. 298, 153–161 (2010).

    Article  Google Scholar 

  9. Ruscitto, D. M., Wallace, P. J. & Kent, A. J. R. Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: Implications for the formation of high-Mg andesites. Contrib. Mineral. Petrol. 162, 109–132 (2011).

    Article  Google Scholar 

  10. Le Voyer, M., Rose-Koga, E. F., Shimizu, N., Grove, T. L. & Schiano, P. Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J. Petrol. 51, 1571–1595 (2010).

    Article  Google Scholar 

  11. Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain 4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

    Article  Google Scholar 

  12. Shaw, A. M., Hauri, E. H., Fischer, T. P., Hilton, D. R. & Kelley, K. A. Hydrogen isotopes in Mariana Arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle. Earth Planet. Sci. Lett. 275, 138–145 (2008).

    Article  Google Scholar 

  13. Leeman, W. P., Tonarini, S., Chan, L. H. & Borg, L. E. Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem. Geol. 212, 101–124 (2004).

    Article  Google Scholar 

  14. Borg, L. E., Clynne, M. A. & Bullen, T. D. The variable role of slab-derived fluids in the generation of a suite of primitive lavas from the southernmost Cascades. Can. Mineral. 35, 425–452 (1997).

    Google Scholar 

  15. Borg, L. E., Blichert-Toft, J. & Clynne, M. A. Ancient and modern subduction zone contributions to the mantle sources of lavas from the Lassen Region of California inferred from Lu–Hf isotopic systematics. J. Petrol. 43, 705–723 (2002).

    Article  Google Scholar 

  16. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  17. Cooper, L. B. et al. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem. Geophys. Geosyst. 13, 1–27 (2012).

    Article  Google Scholar 

  18. McCrory, P. A., Blair, J. L., Waldhauser, F. & Oppenheimer, D. H. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity. J. Geophys. Res. 117, 1–16 (2012).

    Article  Google Scholar 

  19. Cozzens, B. D. & Spinelli, G. A. A wider seismogenic zone at Cascadia due to fluid circulation in subducting oceanic crust. Geology 40, 899–902 (2012).

    Article  Google Scholar 

  20. Wilson, C. R., Spiegelman, M., van Keken, P. E. & Hacker, B. R. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261–274 (2014).

    Article  Google Scholar 

  21. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  Google Scholar 

  22. Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: An experimental study. J. Petrol. 49, 717–740 (2008).

    Article  Google Scholar 

  23. Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E. & Newville, M. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40, 915–918 (2012).

    Article  Google Scholar 

  24. Bucholz, C. E., Gaetani, G. A., Behn, M. D. & Shimizu, N. Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 374, 145–155 (2013).

    Article  Google Scholar 

  25. Newman, S., Epstein, S. & Stolper, E. Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 AD eruption of the Mono Craters, California: Constraints on degassing phenomena and initial volatile content. J. Volcanol. Geotherm. Res. 35, 75–96 (1988).

    Article  Google Scholar 

  26. Poreda, R., Schilling, J. G. & Craig, H. Helium and hydrogen isotopes in ocean-ridge basalts north and south of Iceland. Earth Planet. Sci. Lett. 78, 1–17 (1986).

    Article  Google Scholar 

  27. Taran, Y. A., Pokrovsky, B. G. & Volynets, O. N. Hydrogen isotopes in hornblendes and biotites from Quaternary volcanic rocks of the Kamchatka-Kurile Arc. Geochem. J. 31, 203–222 (1997).

    Article  Google Scholar 

  28. Giggenbach, W. F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 113, 495–510 (1992).

    Article  Google Scholar 

  29. Wada, I., Behn, M. D. & Shaw, A. M. Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones. Earth Planet. Sci. Lett. 353, 60–71 (2012).

    Article  Google Scholar 

  30. Connolly, J. A. D. The geodynamic equation of state: What and how. Geochem. Geophys. Geosyst. 10, 1–19 (2009).

    Article  Google Scholar 

  31. Wannamaker, P. E. et al. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosyst. 15, 4230–4253 (2014).

    Article  Google Scholar 

  32. Liu, K., Levander, A., Zhai, Y., Porritt, R. W. & Allen, R. M. Asthenospheric flow and lithospheric evolution near the Mendocino Triple Junction. Earth Planet. Sci. Lett. 323, 60–71 (2012).

    Article  Google Scholar 

  33. Alt, J. C. et al. Recycling of water, carbon, and sulphur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327, 50–60 (2012).

    Article  Google Scholar 

  34. Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).

    Article  Google Scholar 

  35. Davis, A. S., Clague, D. A., Cousens, B. L., Keaten, R. & Paduan, J. B. Geochemistry of basalt from the North Gorda segment of the Gorda Ridge: Evolution toward ultraslow spreading ridge lavas due to decreasing magma supply. Geochem. Geophys. Geosyst. 9, 1–24 (2008).

    Article  Google Scholar 

  36. Grove, T., Parman, S., Bowring, S., Price, R. & Baker, M. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California. Contrib. Mineral. Petrol. 142, 375–396 (2002).

    Article  Google Scholar 

  37. Jicha, B. R. et al. Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington. Contrib. Mineral. Petrol. 157, 189–207 (2009).

    Article  Google Scholar 

  38. Mullen, E. K. & Weis, D. Evidence for trench-parallel mantle flow in the northern Cascade Arc from basalt geochemistry. Earth Planet. Sci. Lett. 414, 100–107 (2015).

    Article  Google Scholar 

  39. Skora, S. & Blundy, J. High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism. J. Petrol. 51, 2211–2243 (2010).

    Article  Google Scholar 

  40. Spandler, C. & Pirard, C. Element recycling from subducting slabs to arc crust: A review. Lithos 170, 208–223 (2013).

    Article  Google Scholar 

  41. Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

    Article  Google Scholar 

  42. Klimm, K., Blundy, J. D. & Green, T. H. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J. Petrol. 49, 523–553 (2008).

    Article  Google Scholar 

  43. Jégo, S. & Dasgupta, R. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulphur from subducting slab to mantle wedge. Geochim. Cosmochim. Acta 110, 106–134 (2013).

    Article  Google Scholar 

  44. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  45. Donnelly, K. E., Goldstein, S. L., Langmuir, C. H. & Spiegelman, M. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett. 226, 347–366 (2004).

    Article  Google Scholar 

  46. Shaw, A. M. Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nature Geosci. 5, 224–228 (2012).

    Article  Google Scholar 

  47. Hauri, E. H. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002).

    Article  Google Scholar 

  48. Hauri, E. H. et al. Matrix effects in hydrogen isotope analysis of silicate glasses by SIMS. Chem. Geol. 235, 352–365 (2006).

    Article  Google Scholar 

  49. Loewen, M. W. & Kent, A. J. Sources of elemental fractionation and uncertainty during the analysis of semi-volatile metals in silicate glasses using LA-ICP-MS. J. Anal. Atom. Spectrom. 27, 1502–1508 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Kent (Oregon State University) for assistance with the LA-ICP-MS measurements, J. Wang for support in the Carnegie SIMS lab, and T. Plank and J. Lowenstern for helpful discussions. Financial support was provided by the National Science Foundation (grants EAR-1119224 and EAR-1019848) and the Carnegie Institution of Washington.

Author information

Authors and Affiliations

Authors

Contributions

M.A.C., K.J.W. and P.J.W. collected samples, K.J.W. and E.H.H. acquired the geochemical data, I.W. carried out the thermal model calculations. I.W. and K.J.W. performed the fractionation model calculations. All authors participated in writing, revision and interpretation of the data for the manuscript.

Corresponding author

Correspondence to K. J. Walowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1286 kb)

Supplementary Information

Supplementary Information (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walowski, K., Wallace, P., Hauri, E. et al. Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nature Geosci 8, 404–408 (2015). https://doi.org/10.1038/ngeo2417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing