Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change impacts on the biophysics and economics of world fisheries

Abstract

Global marine fisheries are underperforming economically because of overfishing, pollution and habitat degradation. Added to these threats is the looming challenge of climate change. Observations, experiments and simulation models show that climate change would result in changes in primary productivity, shifts in distribution and changes in the potential yield of exploited marine species, resulting in impacts on the economics of fisheries worldwide. Despite the gaps in understanding climate change effects on fisheries, there is sufficient scientific information that highlights the need to implement climate change mitigation and adaptation policies to minimize impacts on fisheries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram indicating the biophysical and socio-economic impacts of climate change at different levels of organizations, from individual organisms to the society.
Figure 2: Sea surface temperature changes, global fish catch and the number of publications on the relationship between climate change and fisheries.
Figure 3: Summary of the approach and key results of a modelling study that assesses the impacts of climate change on potential catches from global fisheries.

References

  1. Food and Agriculture Organization The State of World Fisheries and Aquaculture 2010 (FAO, 2011).

  2. Sumaila, U. R., Marsden, A. D., Watson, R. & Pauly, D. A global ex-vessel fish price database: Construction and applications. J. Bioecon. 9, 39–51 (2007).

    Google Scholar 

  3. World Bank/Food and Agriculture Organization The Sunken Billions — The Economic Justification for Fisheries Reform (World Bank, 2008).

  4. Roy, N., Arnason, R. & Schrank, W. E. The identification of economic base industries, with an application to the Newfoundland fishing industry. Land Econ. 85, 675–691 (2009).

    Google Scholar 

  5. Dyck, A. J. & Sumaila, U. R. Economic impact of ocean fish populations in the global fishery. J. Bioecon. 12, 227–243 (2010).

    Google Scholar 

  6. Kurien, J. Responsible Fish Trade and Food Security FAO Fisheries Technical Paper 456 (FAO, 2005).

    Google Scholar 

  7. Béné, C., Hersoug, B. & Allison, E. H. Not by rent alone: analysing the pro-poor functions of small-scale fisheries in developing countries. Dev. Policy Rev. 28, 325–358 (2010).

    Google Scholar 

  8. Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).

    CAS  Google Scholar 

  9. Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    CAS  Google Scholar 

  10. Srinivasan, U., Cheung, W., Watson, R. & Sumaila, U. R. Food security implications of global marine catch losses due to overfishing. J. Bioecon. 12, 183–200 (2010).

    Google Scholar 

  11. Brander, K. M. Global fish production and climate change. Proc. Natl Acad. Sci. USA 104, 19709–19714 (2007).

    CAS  Google Scholar 

  12. Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).

    Google Scholar 

  13. Cooley, S. R. & Doney, S. C. Anticipating ocean acidification's economic consequences for commercial fisheries. Environ. Res. Lett. 4, 024007 (2009).

    Google Scholar 

  14. Eide, A. Economic impacts of global warming: The case of the Barents Sea fisheries. Nat. Resour. Model. 20, 199–221 (2007).

    Google Scholar 

  15. Sumaila, U. R. & Cheung, W. W. L. Cost of Adapting Fisheries to Climate Change World Bank Discussion Paper 5 (International Bank for Reconstruction and Development/World Bank, 2010).

    Google Scholar 

  16. Tseng, W. & Chen, C. Valuing the potential economic impact of climate change on the Taiwan trout. Ecolog. Econ. 65, 282–291 (2008).

    Google Scholar 

  17. Arnason, R. Climate change and fisheries: assessing the economic impact in Iceland and Greenland. Nat. Resour. Model. 20, 163–197 (2007).

    Google Scholar 

  18. IPCC Climate Change 2007: Synthesis Report (eds Pachauri, R. K & Reisinger, A.) (IPCC, 2007).

  19. Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. G. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I 57, 587–595 (2010).

    CAS  Google Scholar 

  20. Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).

    CAS  Google Scholar 

  21. Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    CAS  Google Scholar 

  22. Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeoscience 7, 979–1005 (2010).

    CAS  Google Scholar 

  23. Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

    Google Scholar 

  24. Pauly, D. The relationships between gill surface area and growth performance in fish: a gerneralization of von Bertalanffy's theory of growth. Ber. Deutsch. Wissenschaft. Kommission Meeresforschung 28, 251–282 (1981).

    Google Scholar 

  25. Pauly, D. Gasping fish and panting squids: oxygen, temperature and the growth of water-breathing animals, Vol. 22 in Excellence in Ecology Series (ed. Kinne, O.) (International Ecology Institute, 2010).

    Google Scholar 

  26. Pauly, D. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J. Conseil Int. Explor. Mer 39, 175–192 (1980).

    Google Scholar 

  27. Kolding, J, Haug, L. & Stefansson, S. Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Can. J. Fish. Aquat. Sci. 65, 1413–1424 (2008).

    CAS  Google Scholar 

  28. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

    CAS  Google Scholar 

  29. Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).

    CAS  Google Scholar 

  30. Guinotte, J. M. & Fabry, V. J. Ocean acidification and its potential effects on marine ecosystems. Ann. N. Y. Acad. Sci. 1134, 320–342 (2008).

    CAS  Google Scholar 

  31. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Google Scholar 

  32. Cheung, W. W. L., Dunne, J., Sarmiento, J. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected changes in maximum fisheries catch potential in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).

    Google Scholar 

  33. Dupont, S. & Thorndyke, M. C. Impact of CO2-driven ocean acidification on invertebrates early life-history — what we know, what we need to know and what we can do. Biogeosci. Discuss. 6, 3109–3131 (2009).

    Google Scholar 

  34. Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeoscience 6, 2313–2331 (2009).

    CAS  Google Scholar 

  35. Pörtner, H-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).

    Google Scholar 

  36. Stock, C. A. et al. On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog. Oceanogr. 88, 1–27 (2010).

    Google Scholar 

  37. Castillo, J., Barbieri, M. A. & Gonzalez, A. Relationship between sea surface temperature, salinity, and pelagic fish distribution off northern Chile. ICES J. Mar. Sci. 53, 139–146 (1996).

    Google Scholar 

  38. Gaines, S. D., Gaylord, B. & Largier, J. L. Avoiding current oversights in marine reserve design. Ecol. Appl. 13, 32–46 (2003).

    Google Scholar 

  39. O'Conner, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl Acad. Sci. USA 104, 1266–1271 (2007).

    Google Scholar 

  40. Cushing, D. H. Marine Ecology and Fisheries (Cambridge Univ. Press, 1975).

    Google Scholar 

  41. Drinkwater, K. F. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J. Mar. Sci. 62, 1327–1337 (2005).

    Google Scholar 

  42. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    CAS  Google Scholar 

  43. Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Google Scholar 

  44. Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).

    Google Scholar 

  45. Mueter, F. J. & Litzow, M. A. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl. 18, 309–320 (2008).

    Google Scholar 

  46. Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72 (2010).

    Google Scholar 

  47. Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Google Scholar 

  48. Hobday, A. J. Ensemble analysis of the future distribution of large pelagic fishes off Australia. Prog. Oceanogr. 86, 291–301 (2010).

    Google Scholar 

  49. Fodrie, F. J., Heck, K. L. Jr, Powers, S. P., Graham, W. M. & Robinson, K. L. Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob. Change Biol. 16, 48–59 (2010).

    Google Scholar 

  50. Caputi, N. et al. The effect of climate change on the western rock lobster (Panulirus Cygnus) fishery of Western Australia. Can. J. Fish. Aquat. Sci. 67, 85–96 (2010).

    Google Scholar 

  51. Pinnegar, J. K., Cheung, W. W. L. & Heath, M. in Marine Climate Change Impacts Partnership Annual Report Card Science Review 2010–11 (MCCIP, 2010); available at http://www.mccip.org.uk/arc.

    Google Scholar 

  52. Davies, C. Britain prepares for mackerel war with Iceland and Faroes Islands. The Guardian (22 August 2010).

    Google Scholar 

  53. Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).

    Google Scholar 

  54. Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    CAS  Google Scholar 

  55. Ji, R. et al. Marine plankton phenology and life history in changing climate: current research and future directions. J. Plankton Res. 32, 1355–1368 (2010).

    Google Scholar 

  56. Jennings, S. et al. Global-scale predictions of community and ecosystem properties from simple ecological theory. Proc. Biol. Sci. 275, 1375–1383 (2008).

    Google Scholar 

  57. Cheung, W. W. L., Close, C., Lam, V. W. Y., Watson, R. & Pauly, D. Application of macroecological theory to predict effects of climate change on global fisheries potential. Mar. Ecol. Prog. Ser. 365, 187–197 (2008).

    Google Scholar 

  58. Möllmann, C. et al. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the central Baltic Sea. Glob. Change Biol. 15, 1377–1393 (2009).

    Google Scholar 

  59. Grebmeier, J. M. et al. A major ecosystem shift in the northern Bering Sea. Science 311, 1461–1464 (2006).

    CAS  Google Scholar 

  60. Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).

    Google Scholar 

  61. Caviedes, C. N. & Fik, T. J. in Climate Variability, Climate Change and Fisheries (ed. Glantz, M.) 355–375 (Cambridge Univ. Press, 1992).

    Google Scholar 

  62. Sun, C. H., Chiang, F. S., Tsoa, E. & Chen, M. H. The effects of El Niño on the mackerel purse-seine fishery harvests in Taiwan: an analysis integrating the barometric readings and sea surface temperature. Ecolog. Econ. 56, 268–279 (2006).

    Google Scholar 

  63. Pinnegar, J. K., Jennings, S., O'Brien, C. M. O. & Polumin, N. V. C. Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution. J. Appl. Ecol. 39, 377–390 (2002).

    Google Scholar 

  64. Badjeck, M-C., Allison, E. H., Halls, A. S. & Dulvy, N. K. Impacts of climate variability and change on fishery-based livelihoods. Mar. Policy 34, 375–383 (2010).

    Google Scholar 

  65. Pauly, D., Watson, R. & Alder, J. Global trends in world fisheries: impacts on marine ecosystems and food security. Phil. Trans. R. Soc. B 360, 5–12 (2005).

    Google Scholar 

  66. Dalton, M. G. El Niño, expectations, and fishing effort in Monterey Bay, California. J. Environ. Econ. Manage. 42, 336–359 (2001).

    Google Scholar 

  67. Mcilgorm, A. Economic impacts of climate change on sustainable tuna and billfish management: Insights from the Western Pacific. Prog. Oceanogr. 86, 187–191 (2010).

    Google Scholar 

  68. Garza-Gil, A. D., Torralba-Cano, J. & Varela-Lafuente, M. M. Evaluating the economic effects of climate change on the European sardine fishery. Reg. Environ. Change 11, 87–95 (2010).

    Google Scholar 

  69. Trotman, A., Gordon, R. M., Hutchinson, S. D., Singh, R. & McRae-Smith, D. Policy responses to GEC impacts on food availability and affordability in the Caribbean community. Environ. Sci. Policy 12, 529–541 (2009).

    Google Scholar 

  70. Lal, P. N., Kinch, J. & Wickham, F. Review of Economic and Livelihood Impact Assessments of, and Adaptation to, Climate Change in Melanesia (Secretariat of the Pacific Regional Environment Programme, 2009).

    Google Scholar 

  71. Herrick, S. F. Jr, et al. in Climate Change and Small Pelagic Fish (eds Checkley, D. M., Roy, C., Alheit, J. & Oozeki, Y.) 256–274 (Cambridge Univ. Press, 2009).

    Google Scholar 

  72. Sumaila, U. R. et al. A bottom-up re-estimation of global fisheries subsidies. J. Bioecon. 12, 201–225 (2010).

    Google Scholar 

  73. Dasgupta, P. Discounting climate change. J. Risk Uncertain. 37, 141–169 (2008).

    Google Scholar 

  74. Sumaila, U. R. & Walters, C. Intergenerational discounting: a new intuitive approach. Ecol. Econ. 52, 135–142 (2005).

    Google Scholar 

  75. Glantz, M. H. & Thompson, J. D. Resource management and environmental uncertainty: lessons from coastal upwelling fisheries (John Wiley & Sons, 1981).

  76. Pitcher, T., Kalikoski, D., Pramod, G. & Short, K. Not honouring the code. Nature 457, 658–659 (2009).

    CAS  Google Scholar 

  77. Clark, C. W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources (Wiley-Interscience, 1990).

    Google Scholar 

  78. Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).

    Google Scholar 

  79. Cinner, J. E. et al. Gear-based fisheries management as a potential adaptive response to climate change and coral mortality. J. Appl. Ecol. 46, 724–32 (2009).

    Google Scholar 

  80. Morato, T., Watson, R., Pitcher, R. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).

    Google Scholar 

  81. Grafton, R. Q. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).

    Google Scholar 

  82. Beare, D. J. et al. Long-term increase in prevalence of North Sea fishes having southern biogeographic affinities. Mar. Ecol. Prog. Ser. 284, 269–278 (2004).

    Google Scholar 

  83. MacNeil, M. A. et al. Transitional states in marine fisheries: adapting to predicted global change. Phil. Trans. R. Soc. B 365, 3753–3763 (2011).

    Google Scholar 

  84. Clark, C. W., Munro, G. R. & Sumaila, U. R. Subsidies, buybacks, and sustainable fisheries. J. Environ. Econ. Manage. 50, 47–58 (2005).

    Google Scholar 

  85. Organisation for Economic Co-operation and Development Review of Fisheries in OECD Countries 2009 (OECD 2010); available via http://go.nature.com/ahkRVJ.

  86. Allison, E. H. & Ellis, F. The livelihoods approach and management of small scale fisheries. Mar. Policy 25, 377–388 (2001).

    Google Scholar 

  87. Xue, G. China's distant water fisheries and its response to flag state responsibilities. Mar. Policy 30, 651–658 (2006).

    Google Scholar 

  88. Kaczynski, V. M. & Fluharty, D. L. European policies in West Africa: who benefits from fisheries agreements? Mar. Policy 26, 75–93 (2002).

    Google Scholar 

  89. Adams, R. M., Hurd, B., Lenhart, S. & Leary, N. Effects of global warming on agriculture: an interpretative review. Clim. Res. 11, 19–30 (1998).

    Google Scholar 

  90. Miller, K. A. & Munro G. R. Climate and cooperation: A new perspective on the management of shared fish stocks. Mar. Res. Econ. 19, 367–393 (2004).

    Google Scholar 

  91. Pauly, D. et al. The future for fisheries. Science 302, 1359–1361 (2003).

    CAS  Google Scholar 

  92. Daw, T., Adger, W. N., Brown, K. & Badjeck, M-C. Review of Climate Change and Capture Fisheries (FAO, 2008).

    Google Scholar 

  93. Hannesson, R. Global warming and fish migrations. Nat. Resour. Model. 20, 301–319 (2007).

    Google Scholar 

  94. Food and Agriculture Organization Report of the FAO Expert Workshop on Climate Change Implications for Fisheries and Aquaculture, 7–9 April 2008 (FAO, 2008).

  95. Mason, F. The Newfoundland cod stock collapse: a review and analysis of social factors. EGJ 1, http://escholarship.org/uc/item/19p7z78s (2002).

  96. Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: Using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Glob. Environ. Change 21, 7–12 (2010).

    Google Scholar 

  97. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  Google Scholar 

  98. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Google Scholar 

Download references

Acknowledgements

U.R.S. was partly supported by the World Bank and the Pew Charitable Trusts. W.W.L.C. was partly supported by the National Geographic Society and the World Bank. V.W.Y.L. was supported by the Pew Charitable Trusts through U.R.S's Pew Fellowship. D.P. is partially supported by the Pew Charitable Trusts and S.H. is with National Oceanic and Atmospheric Administration San Diego Office. We thank P. Cury, A. Dyck and J. Sarmiento for their insights during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Rashid Sumaila.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumaila, U., Cheung, W., Lam, V. et al. Climate change impacts on the biophysics and economics of world fisheries. Nature Clim Change 1, 449–456 (2011). https://doi.org/10.1038/nclimate1301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing