Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacteria and host interactions in the gut epithelial barrier

Abstract

The gut mucosa acts as a barrier against microbial invaders, whereas resident commensal and foreign invading bacteria interact intimately with the gut epithelium and influence the host cellular and immune systems. The epithelial barrier serves as an infectious foothold for many bacterial pathogens and as an entry port for pathogens to disseminate into deeper tissues. Enteric bacterial pathogens can efficiently infect the gut mucosa using highly sophisticated virulence mechanisms that allow bacteria to circumvent the defense barriers in the gut. We provide an overview of the components of the mucosal barrier and discuss the bacterial stratagems that circumvent these barriers with particular emphasis on the roles of bacterial effector proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T3SS is a delivery system for bacterial effectors.
Figure 2: Interaction between the microbiota and gut pathogens.
Figure 3: The mucus layer as a gut barrier.
Figure 4: Bacterial pathogens breach epithelial integrity.
Figure 5: Bacterial countermeasures against epithelial cell death and turnover.

Similar content being viewed by others

References

  1. Kim, M. et al. Bacterial interactions with the host epithelium. Cell Host Microbe 8, 20–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Galán, J.E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Marteyn, B. et al. Modulation of Shigella virulence in response to available oxygen in vivo Nature 465, 355–358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arpaia, N. et al. TLR signaling is required for Salmonella typhimurium virulence. Cell 144, 675–688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu, X.J., McGourty, K., Liu, M., Unsworth, K.E. & Holden, D.W. pH sensing by intracellular Salmonella induces effector translocation. Science 328, 1040–1043 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGhie, E.J., Brawn, L.C., Hume, P.J., Humphreys, D. & Koronakis, V. Salmonella takes control: effector-driven manipulation of the host. Curr. Opin. Microbiol. 12, 117–124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Stecher, B. & Hardt, W.D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 14, 82–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Keeney, K.M. & Finlay, B.B. Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr. Opin. Microbiol. 14, 92–98 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Savage, D.C., Siegel, J.E., Snellen, J.E. & Whitt, D.D. Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Appl. Environ. Microbiol. 42, 996–1001 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chowdhury, S.R. et al. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets. BMC Genomics 8, 215 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011). This study shows that acetate produced by Bifidobacteria species prevents lethal infection and epithelial cell death induced by EHEC O157.

    Article  CAS  PubMed  Google Scholar 

  13. Maslowski, K.M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23, 366–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Raqib, R. et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl. Acad. Sci. USA 103, 9178–9183 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hooper, L.V. & Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011). This study reports that Clostridium species induce regulatory T cells and maintain immunological homeostasis via stimulating matrix metalloprotease-TGF-β signaling.

    Article  CAS  PubMed  Google Scholar 

  20. Willing, B.P., Russell, S.L. & Finlay, B.B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Garner, C.D. et al. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection. Infect. Immun. 77, 2691–2702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, Y., Suyemoto, M., Garner, C.D., Cicconi, K.M. & Altier, C. Formate acts as a diffusible signal to induce Salmonella invasion. J. Bacteriol. 190, 4233–4241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007). This report shows the benefit of intestinal inflammation in promoting the colonization of bacterial pathogens. The authors showed that S. Typhimurium-induced host inflammation changes the composition and suppresses the growth of the microbiota, thereby overcoming colonization resistance.

    Article  CAS  PubMed  Google Scholar 

  24. Lawley, T.D. et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76, 403–416 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Winter, S.E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella Nature 467, 426–429 (2010). This study, in addition to ref. 23, shows the benefits of intestinal inflammation during S. Typhimurium infection. S. Typhimurium use tetrathionate, which is produced as a result of inflammation, as an electron acceptor and gains a growth advantage to overcome the host microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McGuckin, M.A., Lindén, S.K., Sutton, P. & Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278 (2011). This review explores the role of mucin as a barrier to bacterial infection. It also describes the interaction between bacterial pathogens and the mucus layer.

    Article  CAS  PubMed  Google Scholar 

  27. Dharmani, P., Srivastava, V., Kissoon-Singh, V. & Chadee, K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate Immun. 1, 123–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Li, J.D. et al. Activation of NF-κB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA 95, 5718–5723 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lemjabbar, H. & Basbaum, C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat. Med. 8, 41–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. McAuley, J.L. et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 117, 2313–2324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGuckin, M.A. et al. Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology 133, 1210–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Lindén, S.K. et al. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 5, e1000617 (2009). This study shows the importance of MUC1 in limiting H. pylori colonization. The authors found that mucin acts as decoy that is released from the epithelial surface in response to bacterial binding, thereby preventing prolonged infection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tu, Q.V., McGuckin, M.A. & Mendz, G.L. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol. 57, 795–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ramos, H.C., Rumbo, M. & Sirard, J.C. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 12, 509–517 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Henderson, I.R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J.P. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli Infect. Immun. 67, 5587–5596 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grys, T.E., Siegel, M.B., Lathem, W.W. & Welch, R.A. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect. Immun. 73, 1295–1303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Silva, A.J., Pham, K. & Benitez, J.A. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae Microbiology 149, 1883–1891 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Szabady, R.L., Yanta, J.H., Halladin, D.K., Schofield, M.J. & Welch, R.A. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology 157, 516–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mantle, M. & Rombough, C. Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica Infect. Immun. 61, 4131–4138 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gumbiner, B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Popoff, M.R. & Geny, B. Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim. Biophys. Acta 1788, 797–812 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, F. et al. Interferon-g and tumor necrosis factor-a synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166, 409–419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Graham, W.V. et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J. Biol. Chem. 281, 26205–26215 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Al-Sadi, R., Ye, D., Dokladny, K. & Ma, T.Y. Mechanism of IL-1β-induced increase in intestinal epithelial tight junction permeability. J. Immunol. 180, 5653–5661 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Guttman, J.A. & Finlay, B.B. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta 1788, 832–841 (2009). This review highlights the role of tight junctions as a component of the epithelial barrier and describes how bacterial pathogens target and alter tight junctions during infection.

    Article  CAS  PubMed  Google Scholar 

  47. Croxen, M.A. & Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 8, 26–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Alto, N.M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Arbeloa, A. et al. Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. Cell. Microbiol. 10, 1429–1441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simovitch, M. et al. EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell. Microbiol. 12, 489–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Arbeloa, A. et al. EspM2 is a RhoA guanine nucleotide exchange factor. Cell. Microbiol. 12, 654–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thanabalasuriar, A. et al. The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli Cell. Microbiol. 12, 31–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Flynn, A.N. & Buret, A.G. Tight junctional disruption and apoptosis in an in vitro model of Citrobacter rodentium infection. Microb. Pathog. 45, 98–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Babbin, B.A., Sasaki, M., Gerner-Schmidt, K.W., Nusrat, A. & Klapproth, J.M. The bacterial virulence factor lymphostatin compromises intestinal epithelial barrier function by modulating rho GTPases. Am. J. Pathol. 174, 1347–1357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Casselli, T., Lynch, T., Southward, C.M., Jones, B.W. & DeVinney, R. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect. Immun. 76, 2202–2211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yarbrough, M.L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009). This study shows that VopS has AMPylation activity and modifies conserved threonine residues in Rho GTPase, thereby disrupting Rho GTPase signaling and regulating actin cytoskeleton remodeling.

    Article  CAS  PubMed  Google Scholar 

  57. Boyle, E.C., Brown, N.F. & Finlay, B.B. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell. Microbiol. 8, 1946–1957 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Bruno, V.M. et al. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog. 5, e1000538 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Müller, A.J.D. et al. The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe 20, 125–136 (2009).

    Article  CAS  Google Scholar 

  60. Fischer, W., Prassl, S. & Haas, R. Virulence mechanisms and persistence strategies of the human gastric pathogen Helicobacter pylori Curr. Top. Microbiol. Immunol. 337, 129–171 (2009).

    CAS  PubMed  Google Scholar 

  61. Amieva, M.R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bagnoli, F., Buti, L., Tompkins, L., Covacci, A. & Amieva, M.R. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc. Natl. Acad. Sci. USA 102, 16339–16344 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Papini, E. et al. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest. 102, 813–820 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wroblewski, L.E. et al. Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology 136, 236–246 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Lapointe, T.K., O'Connor, P.M., Jones, N.L., Menard, D. & Buret, A.G. Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell. Microbiol. 12, 692–703 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Madara, J.L. Warner-Lambert/Parke-Davis Award lecture. Pathobiology of the intestinal epithelial barrier. Am. J. Pathol. 137, 1273–1281 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Watson, A.J., Duckworth, C.A., Guan, Y. & Montrose, M.H. Mechanisms of epithelial cell shedding in the Mammalian intestine and maintenance of barrier function. Ann. NY Acad. Sci. 1165, 135–142 (2009).

    Article  PubMed  Google Scholar 

  69. Piguet, P.F., Vesin, C., Donati, Y. & Barazzone, C. TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab. Invest. 79, 495–500 (1999).

    CAS  PubMed  Google Scholar 

  70. Marchiando, A.M. et al. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 140, 1208–1218 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Ashida, H. et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. (in the press).

  72. Carneiro, L.A. et al. Shigella induces mitochondrial dysfunction and cell death in nonmyeloid cells. Cell Host Microbe 5, 123–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Paesold, G., Guiney, D.G., Eckmann, L. & Kagnoff, M.F. Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. Cell. Microbiol. 4, 771–781 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Schauser, K. & Larsson, L.I. Programmed cell death and cell extrusion in rat duodenum: a study of expression and activation of caspase-3 in relation to C-jun phosphorylation, DNA fragmentation and apoptotic morphology. Histochem. Cell Biol. 124, 237–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Jones, R.M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3, 233–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Du, F. & Galán, J.E. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog. 5, e1000595 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Knodler, L.A., Finlay, B.B. & Steele-Mortimer, O. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J. Biol. Chem. 280, 9058–9064 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Kum, W.W., Lo, B.C., Yu, H.B. & Finlay, B.B. Protective role of Akt2 in Salmonella enterica serovar typhimurium-induced gastroenterocolitis. Infect. Immun. 79, 2554–2566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nougayrède, J.P. & Donnenberg, M.S. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol. 6, 1097–1111 (2004).

    Article  PubMed  CAS  Google Scholar 

  80. Nagai, T., Abe, A. & Sasakawa, C. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280, 2998–3011 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Nougayrède, J.P., Foster, G.H. & Donnenberg, M.S. Enteropathogenic Escherichia coli effector EspF interacts with host protein Abcf2. Cell. Microbiol. 9, 680–693 (2007).

    Article  PubMed  CAS  Google Scholar 

  82. Ki, M.R. et al. Differential regulation of ERK1/2 and p38 MAP kinases in VacA-induced apoptosis of gastric epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G635–G647 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Amcheslavsky, A., Jiang, J. & Ip, Y.T. Tissue damage-induced intestinal stem cell division in Drosophila Cell Stem Cell 4, 49–61 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pitsouli, C., Apidianakis, Y. & Perrimon, N. Homeostasis in infected epithelia: stem cells take the lead. Cell Host Microbe 6, 301–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Sellin, J.H., Wang, Y., Singh, P. & Umar, S. β-Catenin stabilization imparts crypt progenitor phenotype to hyperproliferating colonic epithelia. Exp. Cell Res. 315, 97–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Mimuro, H. et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe 2, 250–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Wessler, S. & Backert, S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori Trends Microbiol. 16, 397–405 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Chang, Y.J. et al. Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell. Microbiol. 8, 1740–1752 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Iwai, H. et al. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 130, 611–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010). This study reveals that Cif deaminates NEDD8 and interferes with its function, resulting in cell cycle arrest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jubelin, G. et al. Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways. PLoS Pathog. 6, e1001128 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Morikawa, H. et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem. Biophys. Res. Commun. 401, 268–274 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Samba-Louaka, A. et al. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell. Microbiol. 10, 2496–2508 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Yao, Q. et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc. Natl. Acad. Sci. USA 106, 3716–3721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hemrajani, C. et al. NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coli infection. Proc. Natl. Acad. Sci. USA 107, 3129–3134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Levy, S.B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Marra, A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs R D. 7, 1–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Nordfelth, R., Kauppi, A.M., Norberg, H.A., Wolf-Watz, H. & Elofsson, M. Small-molecule inhibitors specifically targeting type III secretion. Infect. Immun. 73, 3104–3114 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Negrea, A. et al. Salicylidene acylhydrazides that affect type III protein secretion in Salmonella enterica serovar typhimurium. Antimicrob. Agents Chemother. 51, 2867–2876 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Veenendaal, A.K., Sundin, C. & Blocker, A.J. Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J. Bacteriol. 191, 563–570 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Specially Promoted Research (23000012 to C.S.); a Grant-in-Aid for Scientific Research (S) (20229006 to C.S.); a Grant-in-Aid for Young Scientists (A) (23689027 to M.K.); a Grant-in-Aid for Young Scientists (B) (23790471 to M.O. and 23790472 to H.A.), a Grant-in-Aid for Scientific Research (B) (23390102 to H.M.); a Grant-in-Aid for Challenging Exploratory Research (23659220 to H.M.); and a grant from the Japan Initiative for Global Research Network on Infectious Diseases to C.S. from the Ministry of Education, Culture, Sports, Science and Technology. Part of this work was supported by grants from the Naito Foundation (to H.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Sasakawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashida, H., Ogawa, M., Kim, M. et al. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 8, 36–45 (2012). https://doi.org/10.1038/nchembio.741

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing