Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiota-mediated colonization resistance: mechanisms and regulation

Abstract

A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial–microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct mechanisms of colonization resistance.
Fig. 2: Indirect mechanisms of colonization resistance.
Fig. 3: Pathogen evasion of colonization resistance.

Similar content being viewed by others

References

  1. Peterson, J. et al. The NIH human microbiome project. Genome Res. 19, 2317–2323 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gu, S. et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8, e74957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nava, G. M., Friedrichsen, H. J. & Stappenbeck, T. S. Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J. 5, 627–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cavaillon, J.-M. & Legout, S. Centenary of the death of Elie Metchnikoff: a visionary and an outstanding team leader. Microbes Infect. 18, 577–594 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Bohnhoff, M., Drake, B. L. & Miller, C. P. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc. Soc. Exp. Biol. Med. 86, 132–137 (1954).

    Article  CAS  PubMed  Google Scholar 

  9. Freter, R. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J. Infect. Dis. 97, 57–65 (1955).

    Article  CAS  PubMed  Google Scholar 

  10. van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-Van Der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. 69, 405–411 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kristensen, N. B. et al. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8, 52 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stecher, B. Establishing causality in Salmonella-microbiota-host interaction interaction: the use of gnotobiotic mouse models and synthetic microbial communities. Int. J. Med. Microbiol. 311, 151484 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Hutchinson, G. E. An Introduction to Population Ecology (Yale Univ. Press, 1978).

  14. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018). This study demonstrates that microbiota-specific IgA antibodies can enhance colonization of their target bacteria in the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sweeney, N. J. et al. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect. Immun. 64, 3497–3503 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE 8, e53957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun. 39, 676–685 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mullineaux-Sanders, C. et al. Citrobacter amalonaticus inhibits the growth of Citrobacter rodentium in the gut lumen. mBio 12, e0241021 (2021).

    Article  PubMed  Google Scholar 

  20. Leslie, J. L. et al. Protection from lethal Clostridioides difficile infection via intraspecies competition for cogerminant. mBio 12, e00522-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Osbelt, L. et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe 29, 1663–1679.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liou, M. J. et al. Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host Microbe 30, 836–847.e6 (2022). This recent work shows how the microscopic location of a nutrient can determine its availability to a bacterial species in the intestine.

    Article  CAS  PubMed  Google Scholar 

  24. Leatham-Jensen, M. P. et al. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. Infect. Immun. 80, 1716–1727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Bry, L., Falk, P. G., Midtvedt, T. & Gordon, J. I. A model of host–microbial interactions in an open mammalian ecosystem. Science 273, 1380–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Caballero-Flores, G., Pickard, J. M., Fukuda, S., Inohara, N. & Núñez, G. An enteric pathogen subverts colonization resistance by evading competition for amino acids in the gut. Cell Host Microbe 28, 526–533.e5 (2020). This study performed a genome-wide screen to identify pathogen genes required for gut colonization in conventionally raised and GF mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  Google Scholar 

  31. Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 6, e1000711 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 16215 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deriu, E. et al. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Behnsen, J. et al. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat. Commun. 12, 7016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H. & Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 19, 726–739 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Gillor, O., Giladi, I. & Riley, M. A. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 9, 165 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coyne, M. J. et al. A family of anti-Bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat. Commun. 10, 3460 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roelofs, K. G., Coyne, M. J., Gentyala, R. R., Chatzidaki-Livanis, M. & Comstock, L. E. Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo. mBio 7, e01055-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reyes, K., Bardossy, A. C. & Zervos, M. Vancomycin-resistant Enterococci: epidemiology, infection prevention, and control. Infect. Dis. Clin. North Am. 30, 953–965 (2016).

    Article  PubMed  Google Scholar 

  42. Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilmore, M. S. et al. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proc. Natl Acad. Sci. USA 112, 7273–7278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caballero, S. et al. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21, 592–602.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, S. G. et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature 572, 665–669 (2019). This study identifies a precise molecular mechanism behind the colonization resistance conferred by a defined group of bacterial species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aoki, S. K. et al. Contact-dependent inhibition of growth in Escherichia coli. Science 309, 1245–1248 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayes, C. S., Koskiniemi, S., Ruhe, Z. C., Poole, S. J. & Low, D. A. Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb. Perspect. Med. 4, a010025 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coyne, M. J., Roelofs, K. G. & Comstock, L. E. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 17, 58 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ross, B. D. et al. Human gut bacteria contain acquired interbacterial defence systems. Nature 575, 224–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Flaugnatti, N. et al. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat. Commun. 12, 5751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Russell, A. B. et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16, 227–236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. USA 113, 3627–3632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281–1291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Souza, D. P. et al. Bacterial killing via a type IV secretion system. Nat. Commun. 6, 6453 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Whitney, J. C. et al. A broadly distributed toxin family mediates contact-dependent antagonism between Gram-positive bacteria. eLife 6, e26938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sannasiddappa, T. H., Lund, P. A. & Clarke, S. R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front. Microbiol. 8, 1581 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Watanabe, M., Fukiya, S. & Yokota, A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. J. Lipid Res. 58, 1143–1152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun, X. et al. Microbiota-derived metabolic factors reduce Campylobacteriosis in mice. Gastroenterology 154, 1751–1763.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Studer, N. et al. Functional intestinal bile acid 7α-dehydroxylation by Clostridium scindens associated with protection from Clostridium difficile infection in a gnotobiotic mouse model. Front. Cell. Infect. Microbiol. 6, 191 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lewis, B. B., Carter, R. A. & Pamer, E. G. Bile acid sensitivity and in vivo virulence of clinical Clostridium difficile isolates. Anaerobe 41, 32–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lewis, B. B. et al. Pathogenicity locus, core genome, and accessory gene contributions to Clostridium difficile virulence. mBio 8, e00885-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aguirre, A. M. et al. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog. 17, e1010015 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bohnhoff, M., Miller, C. P. & Martin, W. R. Resistance of the mouse’s intestinal tract to experimental Salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J. Exp. Med. 120, 805–816 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shin, R., Suzuki, M. & Morishita, Y. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. J. Med. Microbiol. 51, 201–206 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Rolfe, R. D. Role of volatile fatty acids in colonization resistance to Clostridium difficile. Infect. Immun. 45, 185–191 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Osbelt, L. et al. Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production. PLoS Pathog. 16, e1008448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84–98 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Petersson, J. et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 300, 327–333 (2011).

    Article  Google Scholar 

  75. Johansson, M. E. V. et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18, 582–592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bergstrom, K. S. B. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 6, e1000902 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zarepour, M. et al. The mucin Muc2 limits pathogen burdens and epithelial barrier dysfunction during Salmonella enterica serovar Typhimurium colitis. Infect. Immun. 81, 3672–3683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, T., Sasabe, J., Hullahalli, K., Sit, B. & Waldor, M. K. Increased Listeria monocytogenes dissemination and altered population dynamics in Muc2-deficient mice. Infect. Immun. 89, e00667-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Neumann, M. et al. Deprivation of dietary fiber in specific-pathogen-free mice promotes susceptibility to the intestinal mucosal pathogen Citrobacter rodentium. Gut Microbes 13, 1966263 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rivera-Chávez, F. et al. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19, 443–454 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Litvak, Y., Byndloss, M. X., Tsolis, R. M. & Bäumler, A. J. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 39, 1–6 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Marteyn, B. et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465, 355–358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lopez, C. A. et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353, 1249–1253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Litvak, Y. et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25, 128–139.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spees, A. M. et al. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. mBio 4, e00430-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Herp, S. et al. Mucispirillum schaedleri antagonizes Salmonella virulence to protect mice against colitis. Cell Host Microbe 25, 681–694.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Gong, T., Fu, J., Shi, L., Chen, X. & Zong, X. Antimicrobial peptides in gut health: a review. Front. Nutr. 8, 751010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Ampting, M. T. J. et al. Intestinally secreted C-type lectin Reg3b attenuates salmonellosis but not listeriosis in mice. Infect. Immun. 80, 1115–1120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abt, M. C. et al. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci. Transl Med. 8, 327ra25 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Waldschmitt, N. et al. The regenerating family member 3 β instigates IL-17A-mediated neutrophil recruitment downstream of NOD1/2 signalling for controlling colonization resistance independently of microbiota community structure. Gut 68, 1190–1199 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Bosch, T. C. G. & Zasloff, M. Antimicrobial peptides — or how our ancestors learned to control the microbiome. mBio 12, e0184721 (2021).

    Article  PubMed  Google Scholar 

  102. Mayneris-Perxachs, J., Moreno-Navarrete, J. M. & Fernández-Real, J. M. The role of iron in host–microbiota crosstalk and its effects on systemic glucose metabolism. Nat. Rev. Endocrinol. 18, 683–698 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Singh, V. et al. Microbiota-inducible innate immune siderophore binding protein lipocalin 2 is critical for intestinal homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2, 482–498.e6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Klüber, P. et al. Depletion of lipocalin 2 (LCN2) in mice leads to dysbiosis and persistent colonization with segmented filamentous bacteria. Int. J. Mol. Sci. 22, 13156 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zygiel, E. M. & Nolan, E. M. Transition metal sequestration by the host-defense protein calprotectin. Annu. Rev. Biochem. 87, 621–643 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Neil, J. A. et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat. Microbiol. 4, 1737–1749 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Guo, X. et al. Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity 42, 731–743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, J., Waddell, A., Lin, Y. D. & Cantorna, M. T. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 8, 618–626 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Nagao-Kitamoto, H. et al. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat. Med. 26, 608–617 (2020). This work describes that IL-22 modulates glycosylation of host N-linked glycans in response to microbiota colonization, whereas host-derived glycans promote growth of protective symbionts that compete with C. difficile for a nutritional niche in the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim, Y. G. et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 356, 315–319 (2017). This study shows that the lack of colonization resistance in the neonatal gut is caused by the absence of Clostridiales independently of the host immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Behnsen, J. et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 40, 262–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shi, Z. et al. Segmented filamentous bacteria prevent and cure rotavirus infection. Cell 179, 644–658.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sequeira, R. P., McDonald, J. A. K., Marchesi, J. R. & Clarke, T. B. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat. Microbiol. 5, 304–313 (2020). This study unravels distinct microbiota-mediated immune responses that limit K. pneumoniae colonization in different niches, showing that protection in the gut depends on the development of Bacteroidota and IL-36, whereas in the upper airways, Pseudomonadota prime immunity through IL-17A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zheng, L. et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199, 2976–2984 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. van der Waaij, L. A., Limburg, P. C., Mesander, G. & van der Waaij, D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38, 348–354 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Raskova Kafkova, L. et al. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol. 14, 511–522 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Fransen, F. et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43, 527–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Wijburg, O. L. C. et al. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203, 21–26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Betz, K. J. et al. Enhanced survival following oral and systemic Salmonella enterica serovar Typhimurium infection in polymeric immunoglobulin receptor knockout mice. PLoS ONE 13, e0198434 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fadlallah, J. et al. Microbial ecology perturbation in human IgA deficiency. Sci. Transl Med. 10, eaan1217 (2018).

    Article  PubMed  Google Scholar 

  128. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021). This study reveals that intestinal IgA preferentially targets and suppresses pathogenic (hyphal) morphotypes of Candida albicans, promoting commensalism between this opportunistic pathogen and the host during homeostatic conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wilmore, J. R. et al. Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. Cell Host Microbe 23, 302–311.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zeng, M. Y. et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44, 647–658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu, Z. et al. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution. Sci. Immunol. 5, eaay3254 (2020). This is a good example of how secretory immunoglobulins protect against mucosal pathogens and preserve microbiota homeostasis in organisms other than mammals, suggesting a functionally convergent evolution between phylogenetically distant secretory immunoglobulins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bajaj, V., Lucas, R. L., Hwang, C. & Lee, C. A. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22, 703–714 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Hung, C. C. et al. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol. Microbiol. 87, 1045–1060 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  135. Nakanishi, N. et al. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155, 521–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Durant, J. A., Corrier, D. E. & Ricke, S. C. Short-chain volatile fatty acids modulate the expression of the hilA and invF genes of Salmonella typhimurium. J. Food Prot. 63, 573–578 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Kohli, N. et al. The microbiota metabolite indole inhibits Salmonella virulence: involvement of the PhoPQ two-component system. PLoS ONE 13, e0190613 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Connolly, J. P. R. et al. Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion. Nat. Commun. 9, 4187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Miller, B. M. et al. Anaerobic respiration of NOX1-derived hydrogen peroxide licenses bacterial growth at the colonic surface. Cell Host Microbe 28, 789–797.e5 (2020). This work demonstrates that host NOX1-derived H2O2 fuels anaerobic growth of C. rodentium during early infection, whereas the pathogen relies on aerobic respiration for its expansion in the inflamed gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jimenez, A. G., Ellermann, M., Abbott, W. & Sperandio, V. Diet-derived galacturonic acid regulates virulence and intestinal colonization in enterohaemorrhagic Escherichia coli and Citrobacter rodentium. Nat. Microbiol. 5, 368–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Pal, R. R. et al. Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell 177, 683–696.e18 (2019). This work reports that host-attached enteropathogenic E. coli extract nutrients from infected cells in vitro using core components of its T3SS, an intriguing possible explanation behind the characteristic virulence programme of attaching or effacing pathogens in the gut.

    Article  CAS  PubMed  Google Scholar 

  142. Fattinger, S. A., Sellin, M. E. & Hardt, W. D. Salmonella effector driven invasion of the gut epithelium: breaking in and setting the house on fire. Curr. Opin. Microbiol. 64, 9–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lopez, C. A. et al. Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration. mBio 3, e00143-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Faber, F. et al. Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature 534, 697–699 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Faber, F. et al. Respiration of microbiota-derived 1,2-propanediol drives Salmonella expansion during colitis. PLoS Pathog. 13, e1006129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Maier, L. et al. Microbiota-derived hydrogen fuels Salmonella Typhimurium invasion of the gut ecosystem. Cell Host Microbe 14, 641–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Shelton, C. D. et al. Salmonella enterica serovar Typhimurium uses anaerobic respiration to overcome propionate-mediated colonization resistance. Cell Rep. 38, 110180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bronner, D. N. et al. Genetic ablation of butyrate utilization attenuates gastrointestinal Salmonella disease. Cell Host Microbe 23, 266–273.e4 (2018). This paper shows that an inhibitory compound produced by the gut microbiota, butyrate, is also exploited by Salmonella species for better colonization and infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5, 476–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Diaz-Ochoa, V. E. et al. Salmonella mitigates oxidative stress and thrives in the inflamed gut by evading calprotectin-mediated manganese sequestration. Cell Host Microbe 19, 814–825 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhao, W., Caro, F., Robins, W. & Mekalanos, J. J. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359, 210–213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sana, T. G. et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc. Natl Acad. Sci. USA 113, 5044–5051 (2016).

    Article  Google Scholar 

  156. Anderson, M. C., Vonaesch, P., Saffarian, A., Marteyn, B. S. & Sansonetti, P. J. Shigella sonnei encodes a functional T6SS used for interbacterial competition and niche occupancy. Cell Host Microbe 21, 769–776.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Serapio-Palacios, A. et al. Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut. Cell Rep. 39, 110731 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015). This study characterizes the gut microbiota during the first year of life and assesses the impact of mode of delivery and feeding on its establishment in a large patient cohort.

    Article  PubMed  Google Scholar 

  161. Lanata, C. F. et al. Global causes of diarrheal disease mortality in children. PLoS ONE 8, e72788 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Prabhudas, M. et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 12, 189–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhou, P. et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. mSphere 5, e00984-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Singer, J. R. et al. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat. Med. 25, 1772–1782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zheng, W. et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota–host interactions. Nature 553, 427–436 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. O’Sullivan, J. N., Rea, M. C., O’Connor, P. M., Hill, C. & Ross, R. P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol. 95, fiy241 (2019).

    PubMed  Google Scholar 

  170. Cogen, A. L. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bitschar, K. et al. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat. Commun. 10, 2730 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl Med. 9, eaah4680 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bomar, L., Brugger, S. D., Yost, B. H., Davies, S. S. & Lemon, K. P. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio 7, e01725-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Paharik, A. E. et al. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22, 746–756.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Williams, M. R. et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci. Transl Med. 11, eaat8329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bassis, C. M., Tang, A. L., Young, V. B. & Pynnonen, M. A. The nasal cavity microbiota of healthy adults. Microbiome 2, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Janek, D., Zipperer, A., Kulik, A., Krismer, B. & Peschel, A. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLoS Pathog. 12, e1005812 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Sugimoto, S. et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host–pathogen interaction. J. Bacteriol. 195, 1645–1655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu, Q. et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production. Cell Host Microbe 27, 68–78.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Fredricks, D. N., Fiedler, T. L. & Marrazzo, J. M. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 353, 1899–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Turovskiy, Y., Sutyak Noll, K. & Chikindas, M. L. The aetiology of bacterial vaginosis. J. Appl. Microbiol. 110, 1105–1128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Klebanoff, S. J., Hillier, S. L., Eschenbach, D. A. & Waltersdorph, M. Control of the microbial flora of the vagina by H2O2-generating lactobacilli. J. Infect. Dis. 164, 94–100 (1991).

    Article  CAS  PubMed  Google Scholar 

  189. Voravuthikunchai, S. P., Bilasoi, S. & Supamala, O. Antagonistic activity against pathogenic bacteria by human vaginal lactobacilli. Anaerobe 12, 221–226 (2006).

    Article  PubMed  Google Scholar 

  190. Murphy, K. & Mitchell, C. M. The interplay of host immunity, environment and the risk of bacterial vaginosis and associated reproductive health outcomes. J. Infect. Dis. 214, S29–S35 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Eiseman, B., Silen, W., Bascom, G. S. & Kauvar, A. J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854–859 (1958).

    CAS  PubMed  Google Scholar 

  193. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  PubMed  Google Scholar 

  194. Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23, 229–240.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dsouza, M. et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe 30, 583–598.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Mills, J. P., Rao, K. & Young, V. B. Probiotics for prevention of Clostridium difficile infection. Curr. Opin. Gastroenterol. 34, 3–10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shepherd, E. S., Deloache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Lo for critical review of the manuscript. The authors apologize to their colleagues whose work was not cited because of space limitations. G.C.-F. is supported by a K99/R00 award from the US National Institutes of Health. Work in the authors’ laboratory is supported by US National Institutes of Health grants (G.N.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Gustavo Caballero-Flores or Gabriel Núñez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Till Strowig, who co-reviewed with Lisa Osbelt, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bacteriocins

Antimicrobial peptides produced by bacteria to inhibit the growth of similar or closely related bacteria.

Colonization resistance

Mechanisms by which the intestinal microbiota limits the colonization of pathogens and pathobionts.

Cytokine

Small immunoregulatory protein released by cells that mediates cell-to-cell communication in immune responses.

Germ-free (GF) animals

Animals that are born and raised in isolators without exposure to microorganisms.

Pathobionts

Microorganisms that under normal circumstances live as non-harming symbionts, but under certain conditions, usually involving environmental or genetic alterations, induce disease.

Secretion system

Molecular structure assembled by bacteria that enables them to inject effector proteins directly into the host cytoplasm or other microbial cells.

Prebiotics

Compounds in food that promote the growth or activity of beneficial symbionts.

Probiotics

Live microorganisms that upon administration could confer a health benefit on the host.

Secretory IgA

(sIgA). A dimer of IgA molecules bound by a joining peptide (secretory component). sIgA is the predominant immunoglobulin in mucosal surfaces, including the gut.

Symbionts

Organisms of different species living together in a long-term relationship or symbiosis. Many microbial symbionts are mutualistic in that they and the host benefit from each other, whereas commensals receive benefits from the host, but the host is not helped or harmed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballero-Flores, G., Pickard, J.M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 21, 347–360 (2023). https://doi.org/10.1038/s41579-022-00833-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00833-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology