Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis

Abstract

Cytosolic and nuclear iron-sulfur (Fe-S) proteins play key roles in processes such as ribosome maturation, transcription and DNA repair-replication. For biosynthesis of their Fe-S clusters, a dedicated cytosolic Fe-S protein assembly (CIA) machinery is required. Here, we identify the essential flavoprotein Tah18 as a previously unrecognized CIA component and show by cell biological, biochemical and spectroscopic approaches that the complex of Tah18 and the CIA protein Dre2 is part of an electron transfer chain functioning in an early step of cytosolic Fe-S protein biogenesis. Electrons are transferred from NADPH via the FAD- and FMN-containing Tah18 to the Fe-S clusters of Dre2. This electron transfer chain is required for assembly of target but not scaffold Fe-S proteins, suggesting a need for reduction in the generation of stably inserted Fe-S clusters. The pathway is conserved in eukaryotes, as human Ndor1–Ciapin1 proteins can functionally replace yeast Tah18–Dre2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of Tah18 specifically impairs the maturation of cytosolic and nuclear Fe-S proteins.
Figure 2: Tah18 and Dre2 are required early in cytosolic Fe-S protein biogenesis.
Figure 3: Assembly of the Fe-S clusters on Dre2 requires Nfs1 but occurs independently of the CIA machinery.
Figure 4: Electron transfer from NADPH to an Fe-S cluster of Dre2 via the diflavin reductase Tah18.
Figure 5: The human Ndor1–Ciapin1 protein complex is the counterpart of yeast Tah18–Dre2.
Figure 6: The eukaryotic diflavin reductase Tah18 functions in cytosolic-nuclear Fe-S protein biogenesis.

Similar content being viewed by others

References

  1. Johnson, D.C., Dean, D.R., Smith, A.D. & Johnson, M.K. Structure, function and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).

    Article  CAS  Google Scholar 

  2. Lill, R. & Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77, 669–700 (2008).

    Article  CAS  Google Scholar 

  3. Rouault, T.A. & Tong, W.H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24, 398–407 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  4. Lill, R. Function and biogenesis iron-sulphur proteins. Nature 460, 831–838 (2009).

    Article  CAS  Google Scholar 

  5. Fontecave, M. & Ollagnier-de-Choudens, S . Iron-sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Arch. Biochem. Biophys. 474, 226–237 (2008).

    Article  CAS  Google Scholar 

  6. Craig, E.A. & Marszalek, J. A specialized mitochondrial molecular chaperone system: a role in formation of Fe-S centers. Cell. Mol. Life Sci. 59, 1658–1665 (2002).

    Article  CAS  Google Scholar 

  7. Mühlenhoff, U., Gerber, J., Richhardt, N. & Lill, R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815–4825 (2003).

    Article  PubMed Central  Google Scholar 

  8. Dutkiewicz, R. et al. The Hsp70 chaperone Ssq1p is dispensable for iron-sulfur cluster formation on the scaffold protein Isu1p. J. Biol. Chem. 281, 7801–7808 (2006).

    Article  CAS  Google Scholar 

  9. Biederbick, A. et al. Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol. Cell. Biol. 26, 5675–5687 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  10. Mühlenhoff, U. et al. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. J. Biol. Chem. 279, 36906–36915 (2004).

    Article  PubMed Central  Google Scholar 

  11. Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are required for biogenesis of cytosolic Fe-S proteins. EMBO J. 18, 3981–3989 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  12. Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W. & Walden, W.E. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J. 22, 4826–4835 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  13. Hausmann, A. et al. The eukaryotic P-loop NTPase Nbp35: An essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc. Natl. Acad. Sci. USA 102, 3266–3271 (2005).

    Article  CAS  Google Scholar 

  14. Netz, D.J., Pierik, A.J., Stümpfig, M., Mühlenhoff, U. & Lill, R. The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat. Chem. Biol. 3, 278–286 (2007).

    Article  CAS  Google Scholar 

  15. Balk, J., Pierik, A.J., Aguilar Netz, D., Mühlenhoff, U. & Lill, R. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J. 23, 2105–2115 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  16. Urzica, E., Pierik, A.J., Muhlenhoff, U. & Lill, R. Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Biochemistry 48, 4946–4958 (2009).

    Article  CAS  Google Scholar 

  17. Balk, J., Aguilar Netz, D.J., Tepper, K., Pierik, A.J. & Lill, R. The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron-sulfur protein assembly. Mol. Cell. Biol. 25, 10833–10841 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  18. Srinivasan, V. et al. Structure of the yeast WD40 domain protein Cia1, a component acting late in iron-sulfur protein biogenesis. Structure 15, 1246–1257 (2007).

    Article  CAS  Google Scholar 

  19. Zhang, Y. et al. Dre2, a conserved eukaryotic Fe-S cluster protein, functions in cytosolic Fe-S protein biogenesis. Mol. Cell. Biol. 28, 5569–5582 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  20. Song, D. & Lee, F.S. A role for IOP1 in mammalian cytosolic iron-sulfur protein biogenesis. J. Biol. Chem. 283, 9231–9238 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  21. Stehling, O. et al. Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. Mol. Cell. Biol. 28, 5517–5528 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  22. Chanet, R. & Heude, M. Characterization of mutations that are synthetic lethal with pol3–13, a mutated allele of DNA polymerase delta in Saccharomyces cerevisiae. Curr. Genet. 43, 337–350 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  23. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  24. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  25. Tarassov, K. et al. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  26. Vernis, L. et al. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast. PLoS ONE 4, e4376 (2009).

    Article  PubMed Central  Google Scholar 

  27. Murataliev, M.B., Feyereisen, R. & Walker, F.A. Electron transfer by diflavin reductases. Biochim. Biophys. Acta 1698, 1–26 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  28. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  29. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  30. Pierik, A.J., Netz, D.J.A. & Lill, R. Analysis of iron-sulfur protein maturation in eukaryotes. Nat. Protoc. 4, 753–766 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  31. Rutherford, J.C. et al. Activation of the iron-regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial, but not cytosolic iron-sulfur protein biogenesis. J. Biol. Chem. 280, 10135–10140 (2005).

    Article  CAS  Google Scholar 

  32. Ojeda, L. et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron-regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281, 17661–17669 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  33. Schwenkert, S. et al. Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly. Biochem. J. 425, 207–214 (2009).

    Article  PubMed Central  Google Scholar 

  34. Lange, H., Kaut, A., Kispal, G. & Lill, R. A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc. Natl. Acad. Sci. USA 97, 1050–1055 (2000).

    Article  CAS  Google Scholar 

  35. Olteanu, H. & Banerjee, R. Redundancy in the pathway for redox regulation of mammalian methionine synthase: reductive activation by the dual flavoprotein, novel reductase 1. J. Biol. Chem. 278, 38310–38314 (2003).

    Article  CAS  Google Scholar 

  36. Paine, M.J. et al. Cloning and characterization of a novel human dual flavin reductase. J. Biol. Chem. 275, 1471–1478 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  37. Shen, A.L. & Kasper, C.B. Role of acidic residues in the interaction of NADPH-cytochrome P450 oxidoreductase with cytochrome P450 and cytochrome c. J. Biol. Chem. 270, 27475–27480 (1995).

    Article  CAS  Google Scholar 

  38. Santos, M.A., Garcia-Ramirez, J.J. & Revuelta, J.L. Riboflavin biosynthesis in Saccharomyces cerevisiae. Cloning, characterization, and expression of the RIB5 gene encoding riboflavin synthase. J. Biol. Chem. 270, 437–444 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  39. Li, J., Saxena, S., Pain, D. & Dancis, A. Adrenodoxin reductase homolog (Arh1p) of yeast mitochondria required for iron homeostasis. J. Biol. Chem. 276, 1503–1509 (2001).

    Article  CAS  Google Scholar 

  40. Finn, R.D., Wilkie, M., Smith, G. & Paine, M.J. Identification of a functionally impaired allele of human novel oxidoreductase 1 (NDOR1), NDOR1*1. Pharmacogenet. Genomics 15, 381–386 (2005).

    Article  CAS  Google Scholar 

  41. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  42. Chandramouli, K. et al. Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 46, 6804–6811 (2007).

    Article  CAS  Google Scholar 

  43. Kim, J., Gherasim, C. & Banerjee, R. Decyanation of vitamin B12 by a trafficking chaperone. Proc. Natl. Acad. Sci. USA 105, 14551–14554 (2008).

    Article  CAS  Google Scholar 

  44. Yamada, K., Gravel, R.A., Toraya, T. & Matthews, R.G. Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc. Natl. Acad. Sci. USA 103, 9476–9481 (2006).

    Article  CAS  Google Scholar 

  45. Kispal, G., Csere, P., Guiard, B. & Lill, R. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett. 418, 346–350 (1997).

    Article  CAS  Google Scholar 

  46. Sherman, F. Getting started with yeast. Methods Enzymol. 194, 3–21 (1991).

    Article  CAS  Google Scholar 

  47. Bellí, G., Gari, E., Aldea, M. & Herrero, E. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14, 1127–1138 (1998).

    Article  Google Scholar 

  48. Wach, A., Brachat, A., Alberti-Segui, C., Rebischung, C. & Philippsen, P. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13, 1065–1075 (1997).

    Article  CAS  Google Scholar 

  49. Molik, S., Lill, R. & Mühlenhoff, U. Methods for studying iron metabolism in yeast mitochondria. Methods Cell Biol. 80, 261–280 (2007).

    Article  CAS  Google Scholar 

  50. Faeder, E.J. & Siegel, L.M. A rapid micromethod for determination of FMN and FAD in mixtures. Anal. Biochem. 53, 332–336 (1973).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Molik for plasmid construction and D. Vogel for help with cloning. We acknowledge generous support from the Deutsche Forschungsgemeinschaft (SFB 593, the Gottfried-Wilhelm Leibniz program and GRK 1216), Rhön Klinikum AG, von Behring-Röntgen Stiftung, LOEWE program of state Hessen, Max-Planck Gesellschaft and Fonds der chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

D.J.A.N., U.M., A.J.P. and R.L. designed experiments and analyzed data. All authors performed experiments. D.J.A.N., A.J.P. and R.L. wrote the manuscript.

Corresponding authors

Correspondence to Antonio J Pierik or Roland Lill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netz, D., Stümpfig, M., Doré, C. et al. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol 6, 758–765 (2010). https://doi.org/10.1038/nchembio.432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing