Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into Fe–S protein biogenesis by the CIA targeting complex

Abstract

The cytosolic iron–sulfur (Fe–S) assembly (CIA) pathway is required for the insertion of Fe–S clusters into cytosolic and nuclear client proteins, including many DNA replication and repair factors. The molecular mechanisms of client protein recognition and Fe–S cluster transfer remain unknown. Here, we report crystal structures of the CIA targeting complex (CTC), revealing that its CIAO2B subunit is centrally located and bridges CIAO1 and the client adaptor protein MMS19. Cryo-EM reconstructions of human CTC bound either to the DNA replication factor primase or to the DNA helicase DNA2, combined with biochemical, biophysical and yeast complementation assays, reveal an evolutionarily conserved, bipartite client recognition mode facilitated by CIAO1 and the structural flexibility of the MMS19 subunit. Unexpectedly, the primase Fe–S cluster is located ~70 Å away from the CTC reactive cysteine, implicating conformational dynamics of the CTC or additional maturation factors in the mechanism of Fe–S cluster transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures of CIAO1–CIAO2B and MMS19CTD–CIAO1–CIAO2B complexes.
Fig. 2: Architecture of the full-length CIA targeting complex.
Fig. 3: The CTC employs cooperative binding via two binding sites on CIAO1 and MMS19 for client protein recognition.
Fig. 4: Conformational plasticity of the CTC enables recognition of diverse client proteins.
Fig. 5: Proposed mechanism of Fe–S client protein recruitment by the CTC.

Similar content being viewed by others

Data availability

The atomic coordinates and structure factors reported in this study have been deposited in the Protein Data Bank (PDB) under accession codes 6TBN (CIAO1–CIAO2B complex), 6TBL (MMS19CTD–CIAO1–CIAO2B complex) and 6TC0 (MMS19–CIAO1–CIAO2B complex). The cryo-EM density maps have been deposited in the Electron Microscopy Data Bank (EMDB) under accession codes EMD-11016, EMD-11017 and EMD-11018 (CTC–primase), and EMD-11019, EMD-11020 and EMD-11021 (CTC–DNA2). Source data for Fig. 1f, Fig. 3, Extended Data Fig. 2b and Extended Data Fig. 6a are available with the paper online.

References

  1. Beinert, H., Holm, R. H. & Munck, E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659 (1997).

    CAS  PubMed  Google Scholar 

  2. Netz, D. J. et al. Eukaryotic DNA polymerases require an iron–sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8, 125–132 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Klinge, S., Hirst, J., Maman, J. D., Krude, T. & Pellegrini, L. An iron–sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 14, 875–877 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rudolf, J., Makrantoni, V., Ingledew, W. J., Stark, M. J. & White, M. F. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23, 801–808 (2006).

    CAS  PubMed  Google Scholar 

  5. Landry, A. P. & Ding, H. The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster. BioMed Res. Int. 2014, 285791 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Yeeles, J. T., Cammack, R. & Dillingham, M. S. An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases. J. Biol. Chem. 284, 7746–7755 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pokharel, S. & Campbell, J. L. Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron–sulfur cluster domain. Nucleic Acids Res. 40, 7821–7830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bharti, S. K. et al. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome. Cell. Mol. Life Sci. 71, 2625–2639 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gari, K. et al. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 337, 243–245 (2012).

    CAS  PubMed  Google Scholar 

  11. Fuss, J. O., Tsai, C. L., Ishida, J. P. & Tainer, J. A. Emerging critical roles of Fe–S clusters in DNA replication and repair. Biochim. Biophys. Acta 1853, 1253–1271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Paul, V. D. & Lill, R. Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. Biochim. Biophys. Acta 1853, 1528–1539 (2015).

    CAS  PubMed  Google Scholar 

  13. Lill, R. et al. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur. J. Cell Biol. 94, 280–291 (2015).

    CAS  PubMed  Google Scholar 

  14. Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Netz, D. J. et al. A bridging [4Fe–4S] cluster and nucleotide binding are essential for function of the Cfd1–Nbp35 complex as a scaffold in iron–sulfur protein maturation. J. Biol. Chem. 287, 12365–12378 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pallesen, L. J., Solodovnikova, N., Sharma, A. K. & Walden, W. E. Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold. J. Biol. Chem. 288, 23358–23367 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W. & Walden, W. E. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. EMBO J. 22, 4826–4835 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hausmann, A. et al. The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron–sulfur protein assembly machinery. Proc. Natl Acad. Sci. USA 102, 3266–3271 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Balk, J., Pierik, A. J., Netz, D. J., Mühlenhoff, U. & Lill, R. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO J. 23, 2105–2115 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, D. & Lee, F. S. A role for IOP1 in mammalian cytosolic iron-sulfur protein biogenesis. J. Biol. Chem. 283, 9231–9238 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Odermatt, D. C. & Gari, K. The CIA targeting complex is highly regulated and provides two distinct binding sites for client iron-sulfur proteins. Cell Rep. 18, 1434–1443 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Prakash, L. & Prakash, S. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Mol. Gen. Genet. 176, 351–359 (1979).

    CAS  PubMed  Google Scholar 

  23. Lauder, S. et al. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol. Cell. Biol. 16, 6783–6793 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ouyang, B. et al. Solution structure of monomeric human FAM96A. J. Biomol. NMR 56, 387–392 (2013).

    CAS  PubMed  Google Scholar 

  26. Srinivasan, V. et al. Structure of the yeast WD40 domain protein Cia1, a component acting late in iron-sulfur protein biogenesis. Structure 15, 1246–1257 (2007).

    CAS  PubMed  Google Scholar 

  27. Xu, C. & Min, J. Structure and function of WD40 domain proteins. Protein Cell 2, 202–214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stehling, O. et al. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337, 195–199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maione, V., Cantini, F., Severi, M. & Banci, L. Investigating the role of the human CIA2A-CIAO1 complex in the maturation of aconitase. Biochim. Biophys. Acta Gen. Subj. 1862, 1980–1987 (2018).

    CAS  PubMed  Google Scholar 

  30. Weon, J. L., Yang, S. W. & Potts, P. R. Cytosolic iron-sulfur assembly is evolutionarily tuned by a cancer-amplified ubiquitin ligase. Mol. Cell 69, 113–125.e6 (2018).

    CAS  PubMed  Google Scholar 

  31. Vashisht, A. A., Yu, C. C., Sharma, T., Ro, K. & Wohlschlegel, J. A. The association of the xeroderma pigmentosum group D DNA helicase (XPD) with transcription factor IIH is regulated by the cytosolic iron-sulfur cluster assembly pathway. J. Biol. Chem. 290, 14218–14225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, Y. et al. Structure of the protein phosphatase 2A holoenzyme. Cell 127, 1239–1251 (2006).

    CAS  PubMed  Google Scholar 

  33. Chook, Y. M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

    CAS  PubMed  Google Scholar 

  34. Cavadini, S. et al. Cullin–RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531, 598–603 (2016).

    CAS  PubMed  Google Scholar 

  35. Fischer, E. S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147, 1024–1039 (2011).

    CAS  PubMed  Google Scholar 

  36. Cook, A. G. & Conti, E. Nuclear export complexes in the frame. Curr. Opin. Struct. Biol. 20, 247–252 (2010).

    CAS  PubMed  Google Scholar 

  37. Baek, K. et al. NEDD8 nucleates a multivalent cullin–RING–UBE2D ubiquitin ligation assembly. Nature 578, 461–466 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Paul, V. D. et al. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. Eife 4, e08231 (2015).

    Google Scholar 

  39. Abdulrahman, W. et al. A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal. Biochem. 385, 383–385 (2009).

    CAS  PubMed  Google Scholar 

  40. Zhao, Y., Chapman, D. A. & Jones, I. M. Improving baculovirus recombination. Nucleic Acids Res. 31, E6–E6 (2003).

    PubMed  PubMed Central  Google Scholar 

  41. Holt, M. E., Salay, L. E. & Chazin, W. J. A polymerase with potential: the Fe-S cluster in human DNA primase. Meth. Enzymol. 595, 361–390 (2017).

    Google Scholar 

  42. O’Brien, E. et al. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport. Science 355, eaag1789 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  49. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS  PubMed  Google Scholar 

  50. Uson, I. & Sheldrick, G. M. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr. D Struct. Biol. 74, 106–116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    CAS  PubMed  Google Scholar 

  52. Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 470–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    CAS  PubMed  Google Scholar 

  54. Schröder, G. F., Levitt, M. & Brunger, A. T. Deformable elastic network refinement for low-resolution macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 70, 2241–2255 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hohn, M. et al. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).

    CAS  PubMed  Google Scholar 

  58. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schenk, A. D., Cavadini, S., Thomä, N. H. & Genoud, C. Live analysis and reconstruction of single-particle cryo-electron microscopy data with CryoFLARE. J. Chem. Inf. Model. 60, 2561–2569 (2020).

    CAS  PubMed  Google Scholar 

  63. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Google Scholar 

  64. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Cavadini and A. Schenk for help with cryo-EM data collection and processing and for advice about sample optimization. We are particularly grateful to the FMI core facilities: A. Graff Meyer and C. Genoud (electron microscopy); H. Gut, J. Keusch and G. Kempf (X-ray crystallography); and V. Iesmantavicius, D. Hess and J. Seebacher (mass spectrometry). Part of this work was performed at beamlines X06DA and X10SA of the Swiss Light Source (Paul Scherrer Institute). We thank the staff at both beamlines for assistance with X-ray data collection; W. Chazin (Vanderbilt University) for providing the plasmids for recombinant expression of human primase in bacteria and purified primase protein for initial studies; A. Potenza for help with protein expression in the early stage of the project; R. Bunker for help and advice with crystallographic data collection and processing; K. Shimada, M. Hauer and I. Deshpande for sharing protocols and advice on yeast experiments; K. Gari and D. Odermatt for sharing plasmids and helpful discussions; M. Jinek for advice on crystallographic data collection, processing and model building, and critical reading of the manuscript; and J. Reinert and F. Bleichert for comments on the manuscript. S.A.K. was supported by a long-term postdoctoral fellowship from the European Molecular Biology Organization (EMBO, ALTF 871–2014). This work was funded by the Swiss National Science Foundation through Sinergia grant number CRSII3_160734 and by the European Research Council under the European Union’s Horizon 2020 Research and Innovation program, grant number 666068, to N.H.T.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was by S.A.K. and N.H.T. S.A.K. performed and devised the data curation, formal analysis, investigation, visualization and methodology. Project administration was by S.A.K. and N.H.T. The project was supervised by N.H.T. Validation and writing was carried out by S.A.K. and N.H.T.

Corresponding author

Correspondence to Nicolas H. Thomä.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Crystal structure of the CIAO1-CIAO2B core complex.

a, Coomassie-stained SDS-PAGE of purified Drosophila melanogaster CIAO1-CIAO2B complex. b, Surface representation of CIAO1 colored according to amino acid conservation across species based on the alignment in e. c, Surface representation of CIAO1 colored according to electrostatic potential from -3 to +3 kBT/e. d, Strep pull-down assay from Hi5 insect cells expressing Strep-CIAO2B and His-CIAO1 wt or indicated mutants. e, CIAO1 sequence alignment used to map evolutionary conservation in b. Secondary structure elements of human CIAO1 are indicated above the alignment. Numbering is relative to the human sequence. f, Yeast drop assay of CIAO1 point mutations located at the top face of the β-propeller. A Gal-CIA1 strain was transformed with either empty vector, wt human CIAO1, or a CIAO1 point mutant; a dilution series of each culture was spotted on agar plates in the presence of glucose or galactose.

Extended Data Fig. 2 Crystal structures of the MMS19-CIAO2B-CIAO1 CIA targeting complex.

a, Coomassie-stained SDS-PAGE gels of purified MMS19CTD-CIAO2B-CIAO1 and MMS19-CIAO2B-CIAO1 complexes. b, Pull-down assay from HEK293 cells using Flag-tagged human MMS19 wt and mutants, and myc-tagged human CIAO2B/CIAO1. WCE (right) and eluted proteins (IP:Flag, left) were analyzed by Western blot. Corresponding to Fig. 1f. c, Yeast drop assay of MMS19 mutations. A MMS19 knockout strain was transformed with either empty galactose-inducible p415GAL1 vector, p415GAL1 expressing wt MMS19, or p415GAL1 vectors expressing MMS19 mutants. A dilution series of each culture was spotted on agar plates in the presence or absence of galactose and 20 mM HU. d, Lysine residues implicated as targets for ubiquitination by MAGE-F1-NSE1 are shown in green. e, Close-up view of the CIAO2B-CIAO2B dimer interface. Potential Fe-S cluster-coordinating residues H85, C86, and H119 are shown as sticks. Uncropped blot images for panel b are available as source data.

Source data

Extended Data Fig. 3

MMS19 sequence alignment used to map evolutionary conservation in Fig. 2b.

Extended Data Fig. 4 Cryo-EM reconstruction of a CTC-primase complex.

a, Size exclusion chromatography profile of assembled CTC-primase complex. b, Coomassie-stained SDS-PAGE of CTC-primase complex. c, Negative stain 2D class averages of the CTC-primase complex. d, Cryo-EM micrograph of CTC-primase sample. e, Representative 2D class averages of the CTC-primase data set. Scale bar = 100 Å. f, Overview of data processing and classification scheme. g, Angular distribution of particle orientations in the reconstruction. h, FSC plot for half-maps of the reconstruction, 0.143 FSC criterion is indicated.

Extended Data Fig. 5 Cryo-EM reconstruction of a CTC-DNA2 complex.

a, Size exclusion chromatography profile of assembled CTC-DNA2 complex. b, Coomassie-stained SDS-PAGE of CTC-DNA2 complex. c, Negative stain 2D class averages of the CTC-DNA2 complex. d, Cryo-EM micrograph of CTC-DNA2 sample. e, Representative 2D class averages of the CTC-DNA2 data set. Scale bar = 100 Å. f, Overview of data processing and classification scheme. g, Angular distribution of particle orientations in the reconstruction. h, FSC plot for half-maps of the reconstruction, 0.143 FSC criterion is indicated.

Extended Data Fig. 6 Pull-down assays in mammalian cells pinpoint blade 3 in CIAO1 as the main interaction site for recruitment of client proteins.

a, Co-expression and co-IP of Flag-MMS19 with myc-CIAO2B, wild-type or mutant myc-CIAO1, and either myc-PriL/S or myc-DNA2 in HEK293 cells. b, Location of mutated amino acid residues around blade 3 of CIAO1. The inset shows the location of the conserved and charged patches in blade 3 of CIAO1. Uncropped blot images for panel a are available as source data.

Source data

Extended Data Fig. 7 Compositional dynamics of the CTC and its potential role in Fe-S cluster transfer.

a, Compositional dynamics of the CTC might not only be required for maturation of different client proteins (maturation of certain cytosolic proteins by the core complex, and of DNA metabolism proteins by the complete CTC), but also play a role in Fe-S cluster coordination and transfer through CTC dimerization. b, Model of Fe-S cluster transfer and client protein binding by the CTC. See Supplementary Note 1.

Supplementary information

Supplementary Information

Supplementary Note 1, Fig. 1 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 3

Source data for ITC experiments.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 6

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassube, S.A., Thomä, N.H. Structural insights into Fe–S protein biogenesis by the CIA targeting complex. Nat Struct Mol Biol 27, 735–742 (2020). https://doi.org/10.1038/s41594-020-0454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0454-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing