Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric substrate switching in a voltage-sensing lipid phosphatase

Abstract

Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane-associated FRET reporters respond rapidly to changes in PIP2.
Figure 2: PIP3→PIP2 activity occurs soon after VSD rearrangement associated with gating-charge displacement.
Figure 3: Wild-type Ci-VSP appears to have two active enzymatic states.
Figure 4: VSD mutants stabilize discrete VSD conformations.
Figure 5: VSD mutants stabilize discrete enzyme activity states.
Figure 6: Two-step VSD conformational control over VSP phosphatase with two active states.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Changeux, J.P. The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harb. Symp. Quant. Biol. 26, 313–318 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Monod, J. & Jacob, F. General conclusions—teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Hilser, V.J. An ensemble view of allostery. Science 327, 653–654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Motlagh, H.N., Wrabl, J.O., Li, J. & Hilser, V.J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Suh, B.C. & Hille, B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu. Rev. Biophys. 37, 175–195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Worby, C.A. & Dixon, J.E. Phosphoinositide phosphatases: emerging roles as voltage sensors? Mol. Interv. 5, 274–277 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hobiger, K., Utesch, T., Mroginski, M.A. & Friedrich, T. Coupling of Ci-VSP modules requires a combination of structure and electrostatics within the linker. Biophys. J. 102, 1313–1322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hobiger, K., Utesch, T., Mroginski, M.A., Seebohm, G. & Friedrich, T. The linker pivot in Ci-VSP: the key to unlock catalysis. PLoS ONE 8, e70272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hossain, M.I. et al. Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases. J. Biol. Chem. 283, 18248–18259 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kohout, S.C. et al. Electrochemical coupling in the voltage-dependent phosphatase Ci-VSP. Nat. Chem. Biol. 6, 369–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kohout, S.C., Ulbrich, M.H., Bell, S.C. & Isacoff, E.Y. Subunit organization and functional transitions in Ci-VSP. Nat. Struct. Mol. Biol. 15, 106–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Murata, Y. & Okamura, Y. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J. Physiol. (Lond.) 583, 875–889 (2007).

    Article  CAS  Google Scholar 

  15. Villalba-Galea, C.A., Miceli, F., Taglialatela, M. & Bezanilla, F. Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. J. Gen. Physiol. 134, 5–14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hobiger, K. & Friedrich, T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Front. Pharmacol. 6, 20 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kalli, A.C., Devaney, I. & Sansom, M.S. Interactions of phosphatase and tensin homologue (PTEN) proteins with phosphatidylinositol phosphates: insights from molecular dynamics simulations of PTEN and voltage sensitive phosphatase. Biochemistry 53, 1724–1732 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Lacroix, J. et al. Controlling the activity of a phosphatase and tensin homolog (PTEN) by membrane potential. J. Biol. Chem. 286, 17945–17953 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okamura, Y. & Dixon, J.E. Voltage-sensing phosphatase: its molecular relationship with PTEN. Physiology (Bethesda) 26, 6–13 (2011).

    CAS  Google Scholar 

  20. Halaszovich, C.R., Schreiber, D.N. & Oliver, D. Ci-VSP is a depolarization-activated phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5′-phosphatase. J. Biol. Chem. 284, 2106–2113 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Iwasaki, H. et al. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 105, 7970–7975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurokawa, T. et al. 3′ Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP). Proc. Natl. Acad. Sci. USA 109, 10089–10094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, L. et al. A glutamate switch controls voltage-sensitive phosphatase function. Nat. Struct. Mol. Biol. 19, 633–641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsuda, M. et al. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity. J. Biol. Chem. 286, 23368–23377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baker, O.S., Larsson, H.P., Mannuzzu, L.M. & Isacoff, E.Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron 20, 1283–1294 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Pathak, M., Kurtz, L., Tombola, F. & Isacoff, E. The cooperative voltage sensor motion that gates a potassium channel. J. Gen. Physiol. 125, 57–69 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schoppa, N.E. & Sigworth, F.J. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J. Gen. Physiol. 111, 313–342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seoh, S.A., Sigg, D., Papazian, D.M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Villalba-Galea, C.A., Sandtner, W., Starace, D.M. & Bezanilla, F. S4-based voltage sensors have three major conformations. Proc. Natl. Acad. Sci. USA 105, 17600–17607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakata, S. & Okamura, Y. Phosphatase activity of the voltage-sensing phosphatase, VSP, shows graded dependence on the extent of activation of the voltage sensor. J. Physiol. (Lond.) 592, 899–914 (2014).

    Article  CAS  Google Scholar 

  31. Idevall-Hagren, O. & De Camilli, P. Detection and manipulation of phosphoinositides. Biochim. Biophys. Acta 1851, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Mavrantoni, A., Thallmair, V., Leitner, M.G., Schreiber, D.N., Oliver, D. & Halaszovich, C.R. A method to control phosphoinositides and to analyze PTEN function in living cells using voltage sensitive phosphatases. Front. Pharmacol. 6, 68 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sakata, S., Hossain, M.I. & Okamura, Y. Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity. J. Physiol. (Lond.) 589, 2687–2705 (2011).

    Article  CAS  Google Scholar 

  34. Sato, M., Ueda, Y., Takagi, T. & Umezawa, Y. Production of PtdInsP(3) at endomembranes is triggered by receptor endocytosis. Nat. Cell Biol. 5, 1016–1022 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Q. et al. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat. Struct. Mol. Biol. 21, 244–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nishioka, T. et al. Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells. Mol. Biol. Cell 19, 4213–4223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshizaki, H., Mochizuki, N., Gotoh, Y. & Matsuda, M. Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol. Biol. Cell 18, 119–128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cha, A. & Bezanilla, F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19, 1127–1140 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Gandhi, C.S., Loots, E. & Isacoff, E.Y. Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 27, 585–595 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Koch, H.P. et al. Multimeric nature of voltage-gated proton channels. Proc. Natl. Acad. Sci. USA 105, 9111–9116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mannuzzu, L.M., Moronne, M.M. & Isacoff, E.Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Pathak, M.M. et al. Closing in on the resting state of the Shaker K(+) channel. Neuron 56, 124–140 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Tombola, F., Pathak, M.M. & Isacoff, E.Y. How far will you go to sense voltage? Neuron 48, 719–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Castle, P.M., Zolman, K.D. & Kohout, S.C. Voltage-sensing phosphatase modulation by a C2 domain. Front. Pharmacol. 6, 63 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Catterall, W.A. Molecular-properties of voltage-sensitive sodium-Channels. Annu. Rev. Biochem. 55, 953–985 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. Guy, H.R. & Seetharamulu, P. Molecular-model of the action-potential sodium-channel. Proc. Natl. Acad. Sci. USA 83, 508–512 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Papazian, D.M. et al. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Papazian, D.M., Timpe, L.C., Jan, Y.N. & Jan, L.Y. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349, 305–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Tombola, F., Pathak, M.M. & Isacoff, E.Y. How does voltage open an ion channel? Annu. Rev. Cell Dev. Biol. 22, 23–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Campos, F.V., Chanda, B., Roux, B. & Bezanilla, F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc. Natl. Acad. Sci. USA 104, 7904–7909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chamberlin, A. et al. Hydrophobic plug functions as a gate in voltage-gated proton channels. Proc. Natl. Acad. Sci. USA 111, E273–E282 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Lacroix, J.J. & Bezanilla, F. Control of a final gating charge transition by a hydrophobic residue in the S2 segment of a K+ channel voltage sensor. Proc. Natl. Acad. Sci. USA 108, 6444–6449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lacroix, J.J., Hyde, H.C., Campos, F.V. & Bezanilla, F. Moving gating charges through the gating pore in a Kv channel voltage sensor. Proc. Natl. Acad. Sci. USA 111, E1950–E1959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pless, S.A., Galpin, J.D., Niciforovic, A.P. & Ahern, C.A. Contributions of counter-charge in a potassium channel voltage-sensor domain. Nat. Chem. Biol. 7, 617–623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Starace, D.M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Lacroix, J.J. et al. Intermediate state trapping of a voltage sensor. J. Gen. Physiol. 140, 635–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perozo, E., Santacruz-Toloza, L., Stefani, E., Bezanilla, F. & Papazian, D.M. S4 mutations alter gating currents of Shaker K channels. Biophys. J. 66, 345–354 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tao, X., Lee, A., Limapichat, W., Dougherty, D.A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Villalba-Galea, C.A., Frezza, L., Sandtner, W. & Bezanilla, F. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase. J. Gen. Physiol. 142, 543–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Okamura (Osaka University) for Ci-VSP, M. Matsuda (Kyoto University) for Fllip-pm, T. Meyer (Stanford University) for GFP-PLC-PH, T. Balla (US National Institutes of Health) for GFP-TAPP-PH, H. Okada, C. Stanley and Z. Fu for technical support, as well as A. Reiner, S. Bharill, S. Kohout, E. Carroll and other current and former members of the Isacoff laboratory for guidance on analysis and helpful discussions. This work was supported by the US National Institutes of Health (R01GM117051 and T32GM008295; E.Y.I.) as well as fellowship support for provided by the UC Berkeley Chancellors Fellowship for Graduate Study (S.S.G.).

Author information

Authors and Affiliations

Authors

Contributions

E.Y.I. and S.S.G. conceived the study, analyzed the data, directed the evolution of the project and wrote the paper. S.S.G. conducted the experiments.

Corresponding author

Correspondence to Ehud Y Isacoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8. (PDF 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, S., Isacoff, E. Allosteric substrate switching in a voltage-sensing lipid phosphatase. Nat Chem Biol 12, 261–267 (2016). https://doi.org/10.1038/nchembio.2022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing