Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNAs regulate the immunometabolic response to viral infection in the liver

Abstract

Immune regulation of cellular metabolism can be responsible for successful responses to invading pathogens. Viruses alter their hosts' cellular metabolism to facilitate infection. Conversely, the innate antiviral responses of mammalian cells target these metabolic pathways to restrict viral propagation. We identified miR-130b and miR-185 as hepatic microRNAs (miRNAs) whose expression is stimulated by 25-hydroxycholesterol (25-HC), an antiviral oxysterol secreted by interferon-stimulated macrophages and dendritic cells, during hepatitis C virus (HCV) infection. However, 25-HC only directly stimulated miR-185 expression, whereas HCV regulated miR-130b expression. Independently, miR-130b and miR-185 inhibited HCV infection. In particular, miR-185 significantly restricted host metabolic pathways crucial to the HCV life cycle. Interestingly, HCV infection decreased miR-185 and miR-130b levels to promote lipid accumulation and counteract 25-HC's antiviral effect. Furthermore, miR-185 can inhibit other viruses through the regulation of immunometabolic pathways. These data establish these microRNAs as a key link between innate defenses and metabolism in the liver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 25-HC and HCV oppositely regulate miRNA expression.
Figure 2: 25-HC–stimulated miRNAs inhibit HCV life cycle.
Figure 3: 25-HC stimulated miRNAs regulate hepatic lipid metabolism.
Figure 4: HCV infection in vivo disrupts hepatic lipid metabolism.
Figure 5: miR-185 inhibits HCV replication through regulation of lipid microenvironments.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Teissier, E. & Pécheur, E.I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur. Biophys. J. 36, 887–899 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chukkapalli, V., Heaton, N.S. & Randall, G. Lipids at the interface of virus-host Interactions. Curr. Opin. Microbiol. 15, 512–518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 6, 363–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saka, H.A. & Valdivia, R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu. Rev. Cell Dev. Biol. 28, 411–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Schoggins, J.W. & Randall, G. Lipids in innate antiviral defense. Cell Host Microbe 14, 379–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blanc, M. et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38, 106–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, S.Y. et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38, 92–105 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. Pezacki, J.P. et al. Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus. BMC Chem. Biol. 9, 2 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Park, K. & Scott, A.L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol. 88, 1081–1087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedman, R.C., Farh, K.K.H., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rottiers, V. & Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13, 239–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, J.M., Skill, N.J. & Maluccio, M.A. Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma. HPB (Oxford) 12, 625–636 (2010).

    Article  Google Scholar 

  14. Adams, C.M. et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J. Biol. Chem. 279, 52772–52780 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Radhakrishnan, A., Ikeda, Y., Kwon, H.J., Brown, M.S. & Goldstein, J.L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA 104, 6511–6518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R. & Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Goldstein, J.L., DeBose-Boyd, R.A. & Brown, M.S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Su, A.I. et al. Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 99, 15669–15674 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng, J. et al. Liver X receptors agonists impede hepatitis C virus infection in an Idol-dependent manner. Antiviral Res. 95, 245–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Russell, R.S. et al. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus. Proc. Natl. Acad. Sci. USA 105, 4370–4375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vlachos, I.S. et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 40, W498–W504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luna, J.M. et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 160, 1099–1110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qadir, X.V., Han, C., Lu, D., Zhang, J. & Wu, T. miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. Am. J. Pathol. 184, 2355–2364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao, F. et al. A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis. Diabetes 63, 2631–2642 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Steenbergen, R.H.G. et al. Human serum leads to differentiation of human hepatoma cells, restoration of very-low-density lipoprotein secretion, and a 1000-fold increase in HCV Japanese fulminant hepatitis type 1 titers. Hepatology 58, 1907–1917 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Alvisi, G., Madan, V. & Bartenschlager, R. Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol. 8, 258–269 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Pezacki, J.P., Singaravelu, R. & Lyn, R.K. Host-virus interactions during hepatitis C virus infection: a complex and dynamic molecular biosystem. Mol. Biosyst. 6, 1131–1142 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. García-Mediavilla, M.V. et al. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab. Invest. 92, 1191–1202 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. Waris, G., Felmlee, D.J., Negro, F. & Siddiqui, A. Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J. Virol. 81, 8122–8130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pezacki, J.P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, M. et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 55, 226–238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, L. et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol. Cell. Biol. 33, 1956–1964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan, S., Yang, X., Jia, Y., Li, R. & Zhao, R. Microvesicle-shuttled miR-130b reduces Fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-γ expression. J. Cell. Physiol. 229, 631–639 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, P.W.C., Lin, L.Z., Hsu, S.D., Hsu, J.B.K. & Huang, H.-D. ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res. 35, D381–D385 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lyn, R.K. et al. Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. Sci. Rep. 4, 4549 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Régeard, M., Trotard, M., Lepère, C., Gripon, P. & Le Seyec, J. Entry of pseudotyped hepatitis C virus into primary human hepatocytes depends on the scavenger class B type I receptor. J. Viral Hepat. 15, 865–870 (2008).

    Article  PubMed  Google Scholar 

  37. Catanese, M.T. et al. Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission. J. Virol. 87, 8282–8293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Q., Pene, V., Krishnamurthy, S., Cha, H. & Liang, T.J. Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nat. Med. 19, 722–729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Syed, G.H. et al. Hepatitis C Virus stimulates low-density lipoprotein receptor expression to facilitate viral propagation. J. Virol. 88, 2519–2529 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 57, 223–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296, E1195–E1209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mercer, D.F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Singaravelu, R. et al. Hepatitis C virus induced up-regulation of microRNA-27: A novel mechanism for hepatic steatosis. Hepatology 59, 98–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Paul, D., Hoppe, S., Saher, G., Krijnse-Locker, J. & Bartenschlager, R. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J. Virol. 87, 10612–10627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sagan, S.M. et al. The influence of cholesterol and lipid metabolism on host cell structure and hepatitis C virus replication. Biochem. Cell Biol. 84, 67–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Li, S. et al. MicroRNA-130a inhibits HCV replication by restoring the innate immune response. J. Viral Hepat. 21, 121–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, W.M. & Ahlquist, P. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA Virus RNA replication protein. J. Virol. 77, 12819–12828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Civra, A. et al. Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Sci. Rep. 4, 7487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pedersen, I.M. et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449, 919–922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bassendine, M.F., Sheridan, D.A., Bridge, S.H., Felmlee, D.J. & Neely, R.D.G. Lipids and HCV. Semin. Immunopathol. 35, 87–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Blight, K.J., Kolykhalov, A.A. & Rice, C.M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Gong, E.Y., Fischl, W. & Bartenschlager, R. in Antiviral Methods and Protocols Vol. 1030, 205–219 (Humana Press).

  53. Kumar, A. et al. Nuclear localization of Dengue virus nonstructural protein 5 Does Not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. J. Virol. 87, 4545–4557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stojdl, D.F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, Q.Y. et al. Identification of microRNAs involved in Alzheimer's progression using a rabbit model of the disease. Am. J. Neurodegener. Dis. 3, 33–44 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dyer, B.W., Ferrer, F.A., Klinedinst, D.K. & Rodriguez, R. A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal. Biochem. 282, 158–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Folch, J., Lees, M. & Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  59. Graeve, M. & Janssen, D. Improved separation and quantification of neutral and polar lipid classes by HPLC-ELSD using a monolithic silica phase: application to exceptional marine lipids. J. Chromatogr. B 877, 1815–1819 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Ridsdale and the National Research Council of Canada (NRC) coherent anti-Stokes Raman spectroscopy (CARS) facility along with Z. Jakubek and the NRC measurement science and standards (MSS) imaging facility for technical assistance. mRNA microarray profiling was performed by the Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada. Lipid profiling was performed by A. Moses and the Lipid Analysis Core Service, University of Alberta, Edmonton, Alberta, Canada. We also would like to thank E. Riklow for assistance with Dengue virus experiments. This study was supported by funding from Natural Sciences and Engineering Research Council (NSERC) of Canada grant (298496 to J.P.P.) and Canadian Institutes of Health Research (CIHR) grants (136807, 232063 to J.P.P., R.S.R. and D.L.T.; 130365 to K.J.R.; 28637 to T.C.H.). R.S., D.M.J., R.C. and N.G.T. would like to thank the National CIHR Research Training Program in Hepatitis C (NCRTP-HepC) for training and funding. R.S. was supported by a Vanier Canadian Graduate scholarship. D.G.R. was supported by a CIHR graduate scholarship. D.Ö. was supported by a post-doctoral fellowship from the CIHR. A.K. was supported by NSERC–Collaborative Research and Training Experience (CREATE) and Alberta Innovates–Health Solutions postdoctoral fellowships. T.C.H. was supported by a Tier 1 Canada Research Chair.

Author information

Authors and Affiliations

Authors

Contributions

R.S., K.J.R., T.C.H., D.L.T., R.S.R. and J.P.P. conceived and designed experiments. R.S., S.O'H., D.M.J., N.G.T. and R.S.R. performed cell culture and sample collection for experiments using JFH-1T. R.S. and R.H.S. performed cell culture and sample collection for experiments using JFH-HS. R.S. and R.K.L. performed CARS microscopy experiments. R.C. and D.L.T. performed mice experiments. M.-A.N and K.J.R. performed macrophage cell culture and sample collection. R.C. performed lipid analysis and immunofluorescence. R.S. and A.K. performed cell culture and sample collection for experiments dealing with DENV. R.S. and D.G.R. performed cell culture and sample collection for experiments dealing with VSV. R.S., S.O'H., P.S., C.Q., D.Ö. and Y.R. performed all sample processing and downstream analysis. R.S., R.S.R. and J.P.P. analyzed the data. R.S. and J.P.P. wrote the manuscript.

Corresponding author

Correspondence to John Paul Pezacki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–18 and Supplementary Tables 1–6. (PDF 3099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singaravelu, R., O'Hara, S., Jones, D. et al. MicroRNAs regulate the immunometabolic response to viral infection in the liver. Nat Chem Biol 11, 988–993 (2015). https://doi.org/10.1038/nchembio.1940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing