Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Searching for harmony in transition-metal signaling

The recent emergence of signaling roles for transition metals presages a broader contribution of these elements beyond their traditional functions as metabolic cofactors. New chemical approaches to identify the sources, targets and physiologies of transition-metal signaling can help expand understanding of the periodic table in a biological context.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition-metal signaling.
Figure 2: A source-target-physiology (STP) workflow for studies of transition-metal signaling, as exemplified by studies of copper physiology in neural systems.

References

  1. Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry (University Science Books, Mill Valley, California, USA, 1994).

    Google Scholar 

  2. Alberts, B. et al. Molecular Biology of the Cell 5th edn. (Garland Science, Taylor & Francis Group, New York, 2008).

    Google Scholar 

  3. Maske, H. Naturwissenschaften 42, 424 (1955).

    Article  CAS  Google Scholar 

  4. Kim, A.M., Vogt, S., O'Halloran, T.V. & Woodruff, T.K. Nat. Chem. Biol. 6, 674–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, A.M. et al. ACS Chem. Biol. 6, 716–723 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Que, E.L. et al. Nat. Chem. 7, 130–139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turski, M.L. et al. Mol. Cell. Biol. 32, 1284–1295 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brady, D.C. et al. Nature 509, 492–496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixon, S.J. et al. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dixon, S.J. & Stockwell, B.R. Nat. Chem. Biol. 10, 9–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, W.S. et al. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Que, E.L., Domaille, D.W. & Chang, C.J. Chem. Rev. 108, 1517–1549 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Bush, A.I. Curr. Opin. Chem. Biol. 4, 184–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Burdette, S.C. & Lippard, S.J. Proc. Natl. Acad. Sci. USA 100, 3605–3610 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carter, K.P., Young, A.M. & Palmer, A.E. Chem. Rev. 114, 4564–4601 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawabata, E. et al. J. Am. Chem. Soc. 127, 818–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Pan, E. et al. Neuron 71, 1116–1126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson, C.T. et al. Proc. Natl. Acad. Sci. USA 112, E2705–E2714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dodani, S.C. et al. Proc. Natl. Acad. Sci. USA 108, 5980–5985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dodani, S.C. et al. Proc. Natl. Acad. Sci. USA 111, 16280–16285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, J., Dodani, S.C. & Chang, C.J. Nat. Chem. 4, 973–984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aron, A.T., Ramos-Torres, K.M., Cotruvo, J.A. Jr. & Chang, C.J. Acc. Chem. Res. 18, 2434–2442 (2015).

    Article  Google Scholar 

  24. Franz, K.J. Curr. Opin. Chem. Biol. 17, 143–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong-Hermesdorf, A. et al. Nat. Chem. Biol. 10, 1034–1042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the Howard Hughes Medical Institute as well as the US National Institutes of Health (grant GM 79465) for generous research support of my interests in the study of metals at the chemistry-biology interface. I thank A. Aron for helpful feedback on an earlier draft of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J Chang.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C. Searching for harmony in transition-metal signaling. Nat Chem Biol 11, 744–747 (2015). https://doi.org/10.1038/nchembio.1913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1913

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer