Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly of size-controlled liposomes on DNA nanotemplates

Abstract

Artificial lipid-bilayer membranes are valuable tools for the study of membrane structure and dynamics. For applications such as the study of vesicular transport and drug delivery, there is a pressing need for artificial vesicles with controlled size. However, controlling vesicle size and shape with nanometre precision is challenging, and approaches to achieve this can be heavily affected by lipid composition. Here, we present a bio-inspired templating method to generate highly monodispersed sub-100-nm unilamellar vesicles, where liposome self-assembly was nucleated and confined inside rigid DNA nanotemplates. Using this method, we produce homogeneous liposomes with four distinct predefined sizes. We also show that the method can be used with a variety of lipid compositions and probe the mechanism of templated liposome formation by capturing key intermediates during membrane self-assembly. The DNA nanotemplating strategy represents a conceptually novel way to guide lipid bilayer formation and could be generalized to engineer complex membrane/protein structures with nanoscale precision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for generating size-controlled vesicles by nanotemplating.
Figure 2: Characterization of DNA-templated liposomes.
Figure 3: Effect of initial lipid seed placement on final vesicle formation.
Figure 4: Vesicle formation mechanism studied by capturing intermediates during dialysis.

Similar content being viewed by others

References

  1. Cho, W. & Stahelin, R. V. Membrane–protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151 (2005).

    CAS  PubMed  Google Scholar 

  2. Rigaud, J.-L. & Lévy, D. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372, 65–86 (2003).

    CAS  PubMed  Google Scholar 

  3. Bally, M. et al. Liposome and lipid bilayer arrays towards biosensing applications. Small 6, 2481–2497 (2010).

    CAS  PubMed  Google Scholar 

  4. Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    CAS  PubMed  Google Scholar 

  5. Çağdaş, M., Sezer, A. D. & Bucak, S. Liposomes as Potential Drug Carrier Systems for Drug Delivery (InTech, 2014).

    Google Scholar 

  6. Dua, J., Rana, A. & Bhandari, A. Liposome: methods of preparation and applications. Int. J. Pharm. Stud. Res. 3, 14–20 (2012).

    Google Scholar 

  7. Gregory, G. Liposome Technology Vol. 1 (CRC, 2006).

    Google Scholar 

  8. Batzri, S. & Korn, E. D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta 298, 1015–1019 (1973).

    CAS  PubMed  Google Scholar 

  9. Bosworth, M. E., Hunt, C. A. & Pratt, D. Liposome dialysis for improved size distributions. J. Pharm. Sci. 71, 806–812 (1982).

    CAS  PubMed  Google Scholar 

  10. Mayer, L. D., Hope, M. J., Cullis, P. R. & Janoff, A. S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim. Biophys. Acta 817, 193–196 (1985).

    CAS  PubMed  Google Scholar 

  11. Pidgeon, C., McNeely, S., Schmidt, T. & Johnson, J. E. Multilayered vesicles prepared by reverse-phase evaporation: liposome structure and optimum solute entrapment. Biochemistry 26, 17–29 (1987).

    CAS  PubMed  Google Scholar 

  12. Genc, R., Ortiz, M. & O'Sullivan, C. K. Curvature-tuned preparation of nanoliposomes. Langmuir 25, 12604–12613 (2009).

    CAS  PubMed  Google Scholar 

  13. Mouritsen, O. G. Lipids, curvature, and nano-medicine. Eur. J. Lipid Sci. Technol. 113, 1174–1187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, J. et al. Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater. 27, 1402–1407 (2015).

    CAS  PubMed  Google Scholar 

  15. Schubert, R. Liposome preparation by detergent removal. Methods Enzymol. 367, 46–70 (2003).

    CAS  PubMed  Google Scholar 

  16. Holzer, M., Barnert, S., Momm, J. & Schubert, R. Preparative size exclusion chromatography combined with detergent removal as a versatile tool to prepare unilamellar and spherical liposomes of highly uniform size distribution. J. Chromatogr. A 1216, 5838–5848 (2009).

    CAS  PubMed  Google Scholar 

  17. Huang, C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8, 344–352 (1969).

    CAS  PubMed  Google Scholar 

  18. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. & Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 557, 9–23 (1979).

    CAS  PubMed  Google Scholar 

  19. Hope, M. J., Bally, M. B., Webb, G. & Cullis, P. R. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812, 55–65 (1985).

    CAS  PubMed  Google Scholar 

  20. Silva, R., Ferreira, H., Little, C. & Cavaco-Paulo, A. Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason. Sonochem. 17, 628–632 (2010).

    CAS  PubMed  Google Scholar 

  21. Wang, T., Wang, N., Wang, T., Sun, W. & Li, T. Preparation of submicron liposomes exhibiting efficient entrapment of drugs by freeze-drying water-in-oil emulsions. Chem. Phys. Lipids 164, 151–157 (2011).

    CAS  PubMed  Google Scholar 

  22. Yu, D. G. et al. Self-assembled liposomes from amphiphilic electrospun nanofibers. Soft Matter 7, 8239–8247 (2011).

    CAS  Google Scholar 

  23. Jahn, A., Lucas, F., Wepf, R. A. & Dittrich, P. S. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation. Langmuir 29, 1717–1723 (2013).

    CAS  PubMed  Google Scholar 

  24. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    CAS  PubMed  Google Scholar 

  25. Langecker, M., Arnaut, V., List, J. & Simmel, F. C. DNA nanostructures interacting with lipid bilayer membranes. Acc. Chem. Res. 47, 1807–1815 (2014).

    CAS  PubMed  Google Scholar 

  26. Beales, P. A. & Vanderlick, T. K. Specific binding of different vesicle populations by the hybridization of membrane-anchored DNA. J. Phys. Chem. A 111, 12372–12380 (2007).

    CAS  PubMed  Google Scholar 

  27. Chan, Y. H., van Lengerich, B. & Boxer, S. G. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl Acad. Sci. USA 106, 979–984 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dave, N. & Liu, J. Programmable assembly of DNA-functionalized liposomes by DNA. ACS Nano 5, 1304–1312 (2011).

    CAS  PubMed  Google Scholar 

  29. Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotech. 6, 763–772 (2011).

    CAS  Google Scholar 

  30. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    PubMed  Google Scholar 

  31. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  32. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, P. et al. A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery. Int. J. Nanomed. 7, 925–939 (2012).

    CAS  Google Scholar 

  34. Dong, Y. et al. Frame-guided assembly of vesicles with programmed geometry and dimensions. Angew. Chem. Int. Ed. 53, 2607–2610 (2014).

    CAS  Google Scholar 

  35. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 41, e40 (2013).

    CAS  PubMed  Google Scholar 

  37. Kourembanas, S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu. Rev. Physiol. 77, 13–27 (2015).

    CAS  PubMed  Google Scholar 

  38. Vinson, P. K., Talmon, Y. & Walter, A. Vesicle–micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron-microscopy. Biophys. J. 56, 669–681 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho, H.-J. et al. Measurement of ice thickness on vitreous ice embedded cryo-EM grids: investigation of optimizing condition for visualizing macromolecules. J. Anal. Sci. Technol. 4, 7 (2013).

    Google Scholar 

  40. Ludtke, S. J. & Chiu, W. Focal pair merging for contrast enhancement of single particles. J. Struct. Biol. 144, 73–78 (2003).

    PubMed  Google Scholar 

  41. Kaler, E. W., Murthy, A. K., Rodriguez, B. E. & Zasadzinski, J. A. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 245, 1371–1374 (1989).

    CAS  PubMed  Google Scholar 

  42. Li, W., Huang, Z., MacKay, J. A., Grube, S. & Szoka, F. C. Jr. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med. 7, 67–79 (2005).

    PubMed  Google Scholar 

  43. Li, W. & Szoka, F. C. Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24, 438–449 (2007).

    PubMed  Google Scholar 

  44. Ollivon, M., Lesieur, S., Grabielle-Madelmont, C. & Paternostre, M. Vesicle reconstitution from lipid–detergent mixed micelles. Biochim. Biophys. Acta 1508, 34–50 (2000).

    CAS  PubMed  Google Scholar 

  45. Stuart, M. C. & Boekema, E. J. Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid–detergent systems. Biochim. Biophys. Acta 1768, 2681–2689 (2007).

    CAS  PubMed  Google Scholar 

  46. Mimms, L. T., Zampighi, G., Nozaki, Y., Tanford, C. & Reynolds, J. A. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry 20, 833–840 (1981).

    CAS  PubMed  Google Scholar 

  47. Zumbuehl, O. & Weder, H. G. Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. Biochim. Biophys. Acta 640, 252–262 (1981).

    CAS  PubMed  Google Scholar 

  48. Philippot, J., Mutaftschiev, S. & Liautard, J. P. A very mild method allowing the encapsulation of very high amounts of macromolecules into very large (1000 nm) unilamellar liposomes. Biochim. Biophys. Acta 734, 137–143 (1983).

    CAS  Google Scholar 

  49. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344, 65–69 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P.D. Ellis for designing the DNA rings used for placing lipid seeds at different angles and for proofreading the manuscript, and F. Sigworth for providing cryo-electron micrographs of extruded liposomes. This work is supported by a National Institutes of Health (NIH) Director's New Innovator Award (DP2-GM114830), an NIH grant (R21-GM109466) and a Yale University faculty startup fund to C.L., an NIH grant to J.E.R. (R01-DK027044) and an NIH Director's New Innovator Award (DP2-OD004641), an Army Research Office MURI grant (W911NF-12-1-0420), National Science Foundation Expeditions Grant (1317694) and a Wyss Institute for Biologically Inspired Engineering Faculty Award to W.M.S.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and J.W. designed and conducted the majority of the experiments, analysed the data, prepared the majority of the manuscript and contributed equally to this work. H.S. performed cryo-EM studies and prepared the manuscript. W.X. initiated the project, developed the DNA–lipid conjugation method and designed and performed pilot experiments to prepare and purify DNA-ring enclosed vesicles. W.M.S. initiated the project and discussed the results. J.E.R. initiated the project, supervised J.W. and W.X., and discussed the results. C.L. initiated the project, designed and supervised the study, interpreted the data and prepared the manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to William M. Shih, James E. Rothman or Chenxiang Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 47625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, J., Shigematsu, H. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nature Chem 8, 476–483 (2016). https://doi.org/10.1038/nchem.2472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing