Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology

Abstract

The extraordinary development of the design and synthesis of dendrimers has allowed scientists to locate redox sites at precise positions (core, focal points, branching points, termini, cavities) of these perfectly defined macromolecules, which have generation-controlled sizes and topologies matching those of biomolecules. Redox-dendrimer engineering has led to fine modelling studies of electron-transfer metalloproteins, in which the branches of the dendrimers hinder access to the active site in a manner reminiscent of that of the protein. It has also enabled the construction of remarkable catalysts, sensors and printboards, including by sophisticated design of the interface between redox dendrimers and solid-state devices — for example by functionalizing electrodes and other surfaces. Electron-transfer processes between dendrimers and a variety of other molecules hold promising applications in diverse areas that range from bio-engineering to sensing, catalysis and energy materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the general structure of dendrimers.
Figure 2: Metal-centred dendrimers modelling electron-transfer metalloproteins.
Figure 3: A bis-dendronic terpy-ruthenium complex.
Figure 4: Electron-transfer reactions of ferrocenyl redox sites attached to the focal point of Newkome dendrons.
Figure 5: Giant ferrocenyl- and pentamethylferrocenyl dendrimers as electrochrome molecular batteries.
Figure 6: Selective electrostatic effects in multi-ferrocenyl systems.
Figure 7: Dendritic molecular battery for the reduction of C60.
Figure 8: Crooks's concept of synthesis of DENs with catalytic and materials applications.
Figure 9: Biferrocenyl dendritic redox sensors for both metal cations and oxo-anions.

Similar content being viewed by others

References

  1. Dempsey, J. L., Winkler, J. R. & Gray, H. B. Proton-coupled electron flow in protein redox machines. Chem. Rev. 110, 7024–7039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    CAS  PubMed  Google Scholar 

  3. Martin, C. R., Rubinstein, I. & Bard, A. J. Polymer films on electrodes. Electron and mass transfer in nafion films containing Ru(bpy)32+. J. Am. Chem. Soc. 100, 4317–4318 (1978).

    Google Scholar 

  4. Newkome, G. R., Moorefield, C. N. & Vögtle, F. Dendrimers and Dendrons. Concepts, Syntheses, Applications (Wiley-VCH, 2001).

    Google Scholar 

  5. Astruc, D., Boisselier, E. & Ornelas, C. Dendrimers designed for functions: From physical, photophysical and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics and nanomedicine. Chem. Rev. 110, 1857–1959 (2010).

    CAS  PubMed  Google Scholar 

  6. Newkome, G. R., Yao, Z. ; Baker, G. R. & Gupta, V. K. Micelles. 1. Cascade molecules. A new approach to micelles. A [27]-arborol. J. Org. Chem. 50, 2003–2004 (1985).

    CAS  Google Scholar 

  7. Tomalia, D. A. & Fréchet, J. M. J. (eds) Dendrimers and other Dendritic Polymers (Wiley-VCH, 2002).

    Google Scholar 

  8. Knapen, J. W. J. et al. Homogeneous catalysts based on silane dendrimers functionalized with aryl-Ni(II) complexes. Nature 372, 659–663 (1994).

    CAS  Google Scholar 

  9. Gade, L. (ed) Dendrimer Catalysis (Springer, 2006).

    Google Scholar 

  10. Balzani, V. et al. Dendrimers based on photoactive metal complexes. Recent advances. Coord. Chem. Rev. 219–221 545–572 (2001).

    Google Scholar 

  11. Newkome, G. R. & Shreiner, C. Dendrimers derived from 1→3 branching motifs. Chem. Rev. 110, 6338–6442 (2010).

    CAS  PubMed  Google Scholar 

  12. Astruc, D. Research avenues on dendrimers towards molecular biology: from biomimetism to medicinal engineering. C. R. Acad. Sci. II B 322, 757–766 (1996).

    CAS  Google Scholar 

  13. Boas, U. & Christensen, J. B. Dendrimers in Medicine and Biotechnology (Royal Society of Chemistry, 2006).

    Google Scholar 

  14. Andronov, A. & Fréchet, J. M. J. Light-harvesting dendrimers. Chem. Commun. 1701–1710 (2000).

  15. Vögtle, F., Richardt, G. & Werner, N. Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications (Wiley, 2009).

    Google Scholar 

  16. Dandliker, P. J. et al. Dendritic porphyrins - Modulating redox potentials of electroactive chromophores with pendant multifunctionnality. Angew. Chem. Int. Ed. Engl. 33, 1739–1742 (1994).

    Google Scholar 

  17. Dandliker, P. J., Diederich, F., Gisselbrecht, J- P., Louati, A. & Gross, M. Water-soluble dendritic iron porphyrins: synthetic models of globular heme proteins Angew. Chem. Int. Ed. Engl. 34, 2725–2728 (1995).

    CAS  Google Scholar 

  18. Dandliker, P. J. et al. Dendrimers with porphyrin cores: synthetic models for globular heme proteins. Helv. Chim. Acta 80, 1773–1801 (1997).

    CAS  Google Scholar 

  19. Weyermann, P., Gisselbrecht, J. P., Boudon, C., Diederich, F. & Gross, M. Dendritic iron porphyrins with tethered axial ligands: new model compounds for cytochromes. Angew. Chem. Int. Ed. 38, 3215–3219 (1999).

    CAS  Google Scholar 

  20. Moore, G. R. & Pettigrew, G. W. Cytochromes C: Evolutionary, Structural and Physicochemical Aspects (Springer, 1990).

    Google Scholar 

  21. Pollak, K. W., Leon, J. W., Fréchet, J. M. J., Maskus, M. & Abruña, H. D. Effects of dendrimer generation on site isolation of core moieties: electrochemical and fluorescence quenching studies with metalloporphyrin core dendrimers. Chem. Mater. 10, 30–38 (1998).

    CAS  Google Scholar 

  22. Gorman, C. B. et al. Molecular structure-property relationships for electron-transfer rate attenuation in redox-active core dendrimers. J. Am. Chem. Soc. 121, 9958–9966 (1999).

    CAS  Google Scholar 

  23. Smith, J. C. & Gorman, C. B. Structure-property relationships in dendritic encapsulation. Acc. Chem. Res. 34, 60–71 (2001).

    PubMed  Google Scholar 

  24. Cameron, C. S. & Gorman, C. B. Effects of site encapsulation on electrochemical behavior of redox-active core dendrimers. Adv. Funct. Mater. 12, 17–20 (2002).

    CAS  Google Scholar 

  25. Nakamura, A. & Ueyama, N. in Metal Clusters in Proteins (ed. Que, L. Jr) 293–301 (ACS symposium Series Vol 372, American Chemical Society, 1988).

    Google Scholar 

  26. Gray, H. B. & Wrinkler. J. R. Electron transfer in proteins. Ann. Rev. Biochim. 65, 537–561 (1996).

    CAS  Google Scholar 

  27. Armstrong, F. A., Hill, H. A. O. & Walton, N. J. Direct electrochemistry of redox proteins. Acc. Chem. Res. 21, 407–413 (1988).

    CAS  Google Scholar 

  28. Degani, Y. & Heller, A. Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase. J. Phys. Chem. 91, 1285–1289 (1987).

    CAS  Google Scholar 

  29. Sharma, A. K., Kim, M., Cameron, C. S., Lyndon, M. & Gorman, C. B. Dendritically encapsulated, water-soluble Fe(4)S(4) : synthesis and electrochemical properties. Inorg. Chem. 49, 5072–5078 (2010).

    CAS  PubMed  Google Scholar 

  30. Newkome, G. R. et al. Routes to dendritic networks – Bis-dendrimers by coupling of cascade molecules through metal centers. Angew. Chem. Int. Ed. Engl. 34, 2023–2026 (1995).

    CAS  Google Scholar 

  31. Newkome, G. R. et al. Nanoassembly of a fractal polymer: A molecular “Sierpinski hexagon gasket”. Science 312, 1782–1785 (2006).

    CAS  PubMed  Google Scholar 

  32. Sadamoto, R., Tomioka, N. & Aida, T. Photoinduced electron-transfer reactions through dendrimer architecture. J. Am. Chem. Soc. 118, 3978–3979 (1996).

    CAS  Google Scholar 

  33. Hong, Y-R. & Gorman, C. B. Attenuating electron-transfer rates via dendrimer encapsulation: The case of metal tris(bipyridine) core dendrimers. Langmuir 22, 10506–10509 (2006).

    CAS  PubMed  Google Scholar 

  34. Hong, Y-R. & Gorman, C. B. Effect of dendrimer generation on electron-exchange kinetics between metal-tris(bipyridine)-core dendrimers. Chem. Commun. 3195–3197 (2007).

  35. Cardona, C. M. & Kaifer, A. E. Asymmetric redox-active dendrimers containing a ferrocene subunit. Preparation, characterization, and electrochemistry. J. Am. Chem. Soc. 120, 4023–4024 (1998).

    CAS  Google Scholar 

  36. Wang, W., Sun, H. & Kaifer, A. E. Redox-active, hybrid dendrimers containing Fréchet and Newkome-type dendrons. Org. Letters 9, 2657–2660 (2007).

    CAS  Google Scholar 

  37. Kaifer, A. E. Electron transfer and molecular recognition in metallocene-containing dendrimers. Eur. J. Inorg. Chem. 5015–5027 (2007).

    Google Scholar 

  38. Peng, W., Grindstaff, J., Sobransingh, D. & Kaifer, A. E. Electrochemical and guest binding properties of Fréchet- and Newkome-type dendrimers with a single viologen unit located at their apical positions. J. Am. Chem. Soc. 127, 3353–3361 (2005).

    Google Scholar 

  39. Sobransingh, D. & Kaifer, A. E. Preparation, characterization, and electrochemical properties of a new series of hybrid dendrimers containing a viologen core and Fréchet and Newkome dendrons. J. Org. Chem. 73, 5693–5698 (2008).

    Google Scholar 

  40. Appoh, F. E., Long, Y.-T. & Kraatz, H. B. Study of peptide dendrimers having a ferrocene core supported on mercaptodecanoic acid. Langmuir 22, 10515–10522 (2006).

    CAS  PubMed  Google Scholar 

  41. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neuronal Science 4th edn (McGraw-Hill, 2000).

    Google Scholar 

  42. Geiger, W. E. Organometallic electrochemistry: origins, development, and future. Organometallics 26, 5738 (2007).

    CAS  Google Scholar 

  43. Ornelas, C., Ruiz, J., Belin, C. & Astruc, D. Giant dendritic molecular electrochrome batteries with ferrocenyl and pentamethylferrocenyl termini. J. Am. Chem. Soc. 131, 590–601 (2009).

    CAS  PubMed  Google Scholar 

  44. Djeda, R., Ornelas, C., Ruiz, J. & Astruc, D. Branching the electron-reservoir complex [Fe(η5-C5H5)(η6-C6Me6)][PF6] onto large dendrimers: “click”, amide and ionic bonds. Inorg. Chem. 49, 6085–6101 (2010).

    CAS  PubMed  Google Scholar 

  45. Flanagan, J. B., Marel, A., Bard, A. J. & Anson, F. C. Electron transfer to and from molecules containing multiple, noninteracting redox centers – Electrochemical oxidation of poly(vinylferrocene). J. Am. Chem. Soc. 100, 4258–4253 (1978).

    Google Scholar 

  46. Amatore, C. et al. Absolute determination of electron consumption in transient or steady-state electrochemical techniques. J. Electroanal. Chem. 288, 45–63 (1990).

    CAS  Google Scholar 

  47. Richardson, D. E. & Taube, H. Mixed-valence molecules - Electronic delocalization and stabilization. Coord. Chem. Rev. 60, 107–129 (1984).

    CAS  Google Scholar 

  48. Diallo, A. K., Daran, J.-C., Varret, F., Ruiz, J. & Astruc, D. How do redox groups behave around a rigid molecular platform? Hexa(ferrocenylethynyl)benzenes and their “electrostatic” redox chemistry. Angew. Chem. Int. Ed. 48, 3141–3145 (2009).

    CAS  Google Scholar 

  49. Diallo, A. K., Absalon, C., Ruiz, J. & Astruc, D. Ferrocenyl-terminated redox stars: synthesis and electrostatic effects in mixed-valence stabilization J. Am. Chem. Soc. 133, 629–641 (2011).

    CAS  PubMed  Google Scholar 

  50. Barrière, F. & Geiger, W. E. Use of weakly coordinating anions to develop an integrated approach to the tuning of ΔE1/2 values by medium effects. J. Am. Chem. Soc 128, 3980–3989 (2006).

    PubMed  Google Scholar 

  51. Barrière, F. & Geiger, W. E. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions. Acc. Chem. Res. 43, 1030–1039 (2010).

    PubMed  Google Scholar 

  52. Green, S. J. et al. Three dimensional monolayers: voltammetry of alkanethiolate-stabilized gold cluster molecules. Langmuir 14, 5612–5619 (1998).

    CAS  Google Scholar 

  53. Amatore, C., Bouret, Y., Maisonhaute, E., Goldsmith, J. I. & Abruña, H. D. Precise adjustment of nanometric-scale diffusion layers within a redox dendrimer molecule by ultrafast cyclic voltammetry: An electrochemical nanometric microtome. Chem. Eur. J. 7, 2206–2226 (2001).

    CAS  PubMed  Google Scholar 

  54. Hauquier, F., Ghilane, J., Fabre, B. & Hapiot, P. Conducting ferrocene monolayers on nonconducting surfaces. J. Am. Chem. Soc. 130, 2748–2749 (2008).

    CAS  PubMed  Google Scholar 

  55. Wang, A., Ornelas, C., Astruc, D. & Hapiot, P. Electronic communication between immobilized ferrocenyl-terminated dendrimers. J. Am. Chem. Soc. 131, 6652–6653 (2009).

    CAS  PubMed  Google Scholar 

  56. Gloaguen, B. & Astruc, D. Chiral pentaisopropyl- and pentaisopentyl complexes: one-pot synthesis by formation of ten carbon-carbon bonds from pentamethylcobalticinium. J. Am. Chem. Soc. 112, 4607–4609 (1990).

    CAS  Google Scholar 

  57. Ruiz, J. & Astruc, D. Permethylated electron-reservoir sandwich complexes as references for the determination of redox potentials. Suggestion of a new redox scale. C. R. Acad. Sci. II C 1, 21–27 (1998).

    CAS  Google Scholar 

  58. Ornelas, C., Ruiz, J. & Astruc, D. Giant cobalticinium dendrimers. Organometallics 28, 2716–2723 (2009).

    CAS  Google Scholar 

  59. Astruc, D. Organometallic Chemistry and Catalysis Ch. 11, 274 (Springer, 2008).

    Google Scholar 

  60. Madonik, A. M. & Astruc, D. Electron-transfer chemistry of the 20-electron complex [Fe(0)(η6-C6Me6)2] and its strategic role in carbon-hydrogen bond activation. J. Am. Chem. Soc. 106, 2437–2439 (1984).

    CAS  Google Scholar 

  61. Ruiz, J., Ogliaro, F., Saillard, J.-Y., Halet, J.-F., Varret, F. & Astruc, D. First 17-18-19-electron triads of stable isostructural organometallic complexes. The 17-electron complexes [Fe(η5-C5R5)(η6-arene)]2+ (R = H or Me), a novel family of strong oxidants: isolation, characterization, electronic structure and redox properties. J. Am. Chem. Soc. 120, 11693–11705 (1998).

    CAS  Google Scholar 

  62. Trujillo, H. A., Casado, C., Ruiz, J. & Astruc, D. Thermodynamics of C-H activation in multiple oxidation states: compared benzylic C-H acidities and C-H bond dissociation energies in the isostructural 16 to 20-electron complexes [Fex5-C5R5)(η6-arene)]n, x = 0-IV, R = H or Me; n = -1 to +3. J. Am. Chem. Soc. 121, 5674–5686 (1999).

    CAS  Google Scholar 

  63. Hamon, J-R., Astruc, D. & Michaud, P. Syntheses, characterization and stereoelectronic stabilization of organometallic electron-reservoirs: the 19-electron d7 redox catalysis η5-C6R6Fe(I)η6-C6R'6 . J. Am. Chem. Soc. 103, 758–766 (1981).

    CAS  Google Scholar 

  64. Moinet, C., Roman, E. & Astruc, D. Electrochemical reduction of cations η5-cyclopentadienyl Fe+ η6-arene in basic media. Study of the behavior of the radicals formed “in situ”. J. Electroanal. Chem. 121, 241–246 (1981).

    CAS  Google Scholar 

  65. Lacoste, M., Varret, F., Toupet, L. & Astruc, D. Organo-di-iron “electron reservoir” complexes containing a polyaromatic ligand: syntheses, stabilization, delocalized mixed valences and intramolecular coupling. J. Am. Chem. Soc. 109, 6504–6506 (1987).

    CAS  Google Scholar 

  66. Desbois, M.-H. et al. Binuclear electron reservoir complexes: syntheses, reactivity and electronic structure of 37- and 38-electron fulvalene complexes [Fe2(μ2, η10-C10H8)(arene)2]n+, n = 0,1,2. J. Am. Chem. Soc. 111, 5800–5809 (1989).

    CAS  Google Scholar 

  67. Green, J. C. et al. Photoelectron study of electron-reservoir iron(I) cyclopentadienyl arene complexes. Organometallics 2, 211–218 (1983).

    CAS  Google Scholar 

  68. Campagna, S. et al. Dendrimers of nanometer size based on metal complexes - Luminescent and redox-active polynuclear metal complexes containing up to 22 metal centers. Chem. Eur. J. 1, 211–221 (1995).

    CAS  Google Scholar 

  69. Balzani, V., Bergamini, G., Ceroni, P. & Vögtle, F. Electronic spectroscopy of metal complexes with dendritic ligands. Coord. Chem. Rev. 251, 525–535 (2007).

    CAS  Google Scholar 

  70. Balzani, V., Bergamini, G. & Ceroni, P. Photochemistry and photophysics of metal complexes with dendritic ligands. Adv. Inorg. Chem. 63, 105–135 (2011).

    CAS  Google Scholar 

  71. Turkevich, J., Stevenson, P. C. & Hillier, J. Nucleation and growth process in the synthesis of colloidal gold. Disc. Faraday Soc. 11, 55–75 (1951).

    Google Scholar 

  72. Zhao, M., Sun, L. & Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877–4877 (1998).

    CAS  Google Scholar 

  73. Balogh, L. & Tomalia, D. A. Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355–7356 (1998).

    CAS  Google Scholar 

  74. Esumi, K., Suzuki, A., Haihara, N., Usui, K. & Torigoe, K. Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14, 3157–3159 (1998).

    CAS  Google Scholar 

  75. Scott, R. W. J., Wilson, O. M. & Crooks, R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem B 109, 692–704 (2005).

    CAS  PubMed  Google Scholar 

  76. Zhao, M. & Crooks, R. M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. Int. Ed. 38, 364–366 (1999).

    CAS  Google Scholar 

  77. Feng, Z. V., Lyon, J. L., Croley, J. S., Crooks, R. M., Vanden Bout, D. A. & Stevenson, K. J. Synthesis and catalytic evaluation of dendrimer-encapsulated Cu nanoparticles. An undergraduate experiment exploring catalytic nanomaterials. J. Chem. Ed. 86, 368–372 (2009).

    CAS  Google Scholar 

  78. Crooks, R. M., Zhao, M., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    CAS  PubMed  Google Scholar 

  79. Wilson, O. M., Scott, R. W. J., Garcia-Martinez, J. C. & Crooks, R. M. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc. 127, 1015–1024 (2005).

    CAS  PubMed  Google Scholar 

  80. Scott, R. W. J. et al. Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. J. Am. Chem. Soc. 127, 1380–1381 (2005).

    CAS  PubMed  Google Scholar 

  81. Gomez, M. V., Guerra, J., Velders, A. H. & Crooks, R. M. NMR Characterization of fourth-generation PAMAM dendrimers in the presence and absence of palladium dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 131, 341–350 (2009).

    CAS  PubMed  Google Scholar 

  82. Myers, V. S. et al. Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem. Sci. 2, 1632–1646 (2011).

    CAS  Google Scholar 

  83. Ornelas, C., Ruiz, J., Cloutet, E., Alves, S. & Astruc, D. Click Assembly of 1,2,3-triazole-linked dendrimers including ferrocenyl dendrimers that sense both oxo-anions and metal cations Angew. Chem,. Int. Ed. 46, 872–877 (2007 ).

    CAS  Google Scholar 

  84. Ornelas, C., Salmon, L., Ruiz, J. & Astruc, D. “Click” Dendrimers: synthesis, redox censing of Pd(OAc)2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers. Chem. Eur. J. 14, 50–64 (2008).

    CAS  PubMed  Google Scholar 

  85. Ornelas, C., Ruiz, J., Salmon, L. & Astruc, D. Sulfonated “click” dendrimer-stabilized palladium nanoparticles as highly efficient catalysts for olefin hydrogenation and Suzuki coupling reactions under ambient conditions in aqueous media. Adv. Syn. Catal. 350, 837–845 (2008).

    CAS  Google Scholar 

  86. Diallo, A. K., Ornelas, C., Salmon, L., Ruiz, J. & Astruc, D. Homeopathic catalytic activity and atom-leaching mechanism in the Miyaura-Suzuki reactions under ambient conditions using precise “click” dendrimer-stabilized Pd nanoparticles. Angew. Chem. Int. Ed. 46, 8644–8648 (2007).

    CAS  Google Scholar 

  87. Rosen B. M., Wilson, C. J., Wilson, D. A., Peterca, M., Imam, M. R. & Percec, V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6340 (2009).

    CAS  PubMed  Google Scholar 

  88. Boisselier, E. et al. Encapsulation and stabilization of gold nanoparticles with “click” polyethyleneglycol dendrimers. J. Am. Chem. Soc. 132, 2729–2742 (2010).

    CAS  PubMed  Google Scholar 

  89. Ye. H., Carino, E. V. & Crooks, R. M. Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles J. Am. Chem. Soc. 132, 10988–10989 (2010).

    Google Scholar 

  90. Zeng, H., Newkome, G. R. & Hill, C. L. Poly(polyoxometalate) dendrimers: molecular prototypes of new catalytic materials. Angew. Chem. Int. Ed. 39, 1772–1775 (2000).

    CAS  Google Scholar 

  91. Zynek, M., Serantoni, M., Beloshapkin, S., Dempsey, E. & McCormac, T. Electrochemical and surface properties of multilayer films based on a Ru2+ metallodendrimer and the mixed addenda Dawson heteropolyanion. Electroanal. 19, 681–689 (2007).

    CAS  Google Scholar 

  92. Beer, P. D. & Gale, P. A. Anion recognition and sensing: The state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001).

    CAS  Google Scholar 

  93. Valério, C., Fillaut, J.-L., Ruiz, J., Guittard, J., Blais, J.-C. & Astruc, D. The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc. 119, 2588–2589 (1997).

    Google Scholar 

  94. Daniel, M.-C., Ruiz, J., Nlate, S., Blais, J.-C. & Astruc, D. Nanoscopic assemblies between supramolecular redox active metallodendrons and gold nanoparticles: syntheses, charaterization and selective recognition of H2PO4, HSO4 and adenosine-5′-triphosphate (ATP2−) anions. J. Am. Chem. Soc. 125, 1150–1151 (2003).

    CAS  PubMed  Google Scholar 

  95. Djeda, R., Rapakousiou, A., Liang, L., Guidolin, N., Ruiz, J. & Astruc, D. Click syntheses of large 1,2,3-triazolylbiferrocenyl dendrimers and selective roles of the inner and outer ferrocenyl groups in the redox recognition of the ATP2− anion and PdII cation. Angew. Chem. Int. Ed. 49, 8152–8156 (2010).

    CAS  Google Scholar 

  96. Abruña, H. D. Coordination chemistry in two dimensions: chemically modified electrodes Coord. Chem. Rev. 86, 135–189 (1988).

    Google Scholar 

  97. Takada, K. et al. Redox-active ferrocenyl dendrimers: thermodynamics and kinetics of adsorption, in-situ electrochemical quartz crystal microbalance study of the redox process and tapping mode AFM imaging. J. Am Chem. Soc. 119, 10763 (1997).

    CAS  Google Scholar 

  98. Casado, C. M. et al. Redox-active ferrocenyl dendrimers and polymers in solution and immobilised on electrode surfaces. Coord. Chem. Rev. 185–6, 53–79 (1999).

    Google Scholar 

  99. Abruña, H. D. Redox and photoactive dendrimers in solutions and on surfaces. Anal. Chem. 76, 310–319 (2004).

    Google Scholar 

  100. Losada, J. et al. Silicon-based ferrocenyl dendrimers as mediators in biosensing. Anal. Chim. Acta 338, 191–198 (1997).

    CAS  Google Scholar 

  101. Alonso, B. et al. Amerometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocene dendrimers Biosensors Bioelectron 19, 1617–1625 (2004).

    CAS  Google Scholar 

  102. Garcia Armada, M. P. et al. Electroanalytical properties of polymethylferrocenyl dendrimers and their applications in biosensing. Bioelectrochemistry 69, 65–73 (2006).

    Google Scholar 

  103. Losada, J. et al. Bioenzymes sensors based on novel polymethylferrocenyl dendrimers. Anal. Bioanal. Chem. 385, 1209–1217 (2006).

    CAS  PubMed  Google Scholar 

  104. Kim, E., Kim, K., Yang, H., Kim, Y. T. & Kwak, J. Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer. Anal. Chem. 75, 5665–5672 (2003).

    CAS  PubMed  Google Scholar 

  105. Frasconi, M., Deriu, D., Dannibale, A. & Mazzei, F. Nanostructured materials based on the integration of ferrocenyl-tethered dendrimer and redox proteins on self-assembled monolayers: An efficient biosensor interface. Nanotechnol. 20, 505501 (2009).

    Google Scholar 

  106. Lee, J. Y., Kim, B.-K., Hwang, S., Lee, Y. & Kwak, J. Label-free electrochemical DNA detection based on electrostatic interaction between DNA and ferrocene dendrimers. Bull. Korean Chem. Soc. 31, 3099–3102 (2010).

    CAS  Google Scholar 

  107. Kim, C., Park, E., Song, C. K. & Koo, B. W. Ferrocene end-capped dendrimer: synthesis and application to CO gas sensor. Synth. Metals 123, 493–496 (2001).

    CAS  Google Scholar 

  108. Rassie, C. et al. Dendritic 7T-polythiophene electro-catalytic sensor system for the determination of polycyclic aromatic hydrocarbons. Intern. J. Electrochem. Sci. 6, 1949–1967 (2011).

    CAS  Google Scholar 

  109. Fang, P.-P., Buriez, O., Labbé, E., Tian, Z.-Q. & Amatore, C. Electrochemistry at gold nanoparticles deposited on dendrimers assemblies adsorbed onto gold and platinum surfaces. J. Electroanal. Chem. 659, 76–82 (2011).

    CAS  Google Scholar 

  110. Nijhuis, C. A., Huskens, J. & Reinhoudt, D. N. Binding control and stoichiometry of ferrocenyl dendrimers at a molecular printboard. J. Am. Chem. Soc. 126, 12266–12267 (2004).

    CAS  PubMed  Google Scholar 

  111. Nijhuis, C. A., Yu, F., Knoll, W., Huskens, J. & Rheinhoudt, D. N. Multivalent dendrimers at molecular printboards: Influence of dendrimer structure on binding strength and stoichiometry and their electrochemically induced desorption. Langmuir 21, 7866–7876 (2005).

    CAS  PubMed  Google Scholar 

  112. Nijhuis, C. A. et al. Controlling the supramolecular assembly of redox-active dendrimers at molecular printboards by scanning electrochemical microscopy. Langmuir 22, 9770–9775 (2006).

    CAS  PubMed  Google Scholar 

  113. Nijhuis, C. A., Boucamp, B. A., Ravoo, B. J., Huskens, J. & Reinhoudt, D. N. Electrochemistry of ferrocenyl dendrimer - β-cyclodextrin assemblies at the interface of an aqueous solution and a molecular printboard. J. Phys. Chem. C 111, 9799–9810 (2007); correction ibid. 111, 12872–12872 (2007).

    CAS  Google Scholar 

  114. Nijhuis, C. A., Dolatowska, K. A., Ravoo, B. J., Huskens, J. & Reinhoudt, D. N. Redox-controlled interaction of biferrocenyl-terminated dendrimers with β-cyclodextrin molecular printboards. Chem. Eur. J. 13, 69–80 (2007).

    CAS  PubMed  Google Scholar 

  115. Nijhuis, C. A. et al. Preparation of metal-SAM-dendrimer-SAM-metal junctions by supramolecular metal transfer printing. New J. Chem. 32, 652–661 (2008).

    CAS  Google Scholar 

  116. Marchioni, F. et al. Complete charge pooling is prevented in viologen-based dendrimers by self-protection. Chem. Eur. J. 10, 6361–6368 (2004).

    CAS  PubMed  Google Scholar 

  117. Ronconi, C. M. et al. Polyviologen dendrimers as hosts and charge-storing devices. Chem. Eur. J. 14, 8365–8373 (2008).

    CAS  PubMed  Google Scholar 

  118. Balzani, V. et al. Host-guest complexes between an aromatic tweezer and symmetric and unsymmetric dendrimers with a 4,4′-bipirimidium core. J. Am. Chem. Soc. 128, 637–648 (2006).

    CAS  PubMed  Google Scholar 

  119. Selby, T. D. & Blackstock, S. C. Preparation of a redox-gradient dendrimer. Polyamines designed for one-way electron transfer and charge capture. J. Am. Chem. Soc. 120, 12155–12156 (1998).

    CAS  Google Scholar 

  120. Gingras, M. et al. Polysulfurated pyrene-core dendrimers : fluorescent and electrochromic properties. Chem. Eur. J. 14, 10357–10363 (2008).

    CAS  PubMed  Google Scholar 

  121. Lévêque, J. et al. A mixed-bridging ligand nonanuclear Ru(II) dendrimer containing a trischelating core. Synthesis and redox properties. Chem. Commun. 878–879 (2004).

  122. Bryce, M. R., Devonport, W., Goldenberg, L. M. & Wang, C. S. Macromolecular tetrathiofulvalene chemistry. Chem. Commun. 945–951 (1998).

  123. Murray, R. W. Chemically modified electrodes. Electroanal. Chem. 13, 191–368 (1984).

    CAS  Google Scholar 

  124. Bard, A. J. & Mirkin, M. V. (eds) Scanning Electrochemical Microscopy (Marcel Dekker, 2001).

    Google Scholar 

  125. Ochi, Y. et al. Controlled storage of ferrocene derivatives as redox-active molecules in dendrimers. J. Am. Chem. Soc. 132, 5061–5069 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to the colleagues and students cited in references for their ideas and hard work that have greatly contributed to our research on electron-transfer processes in dendrimers and their applications, and to financial assistance from the Université Bordeaux 1, the Centre National de la Recherche Scientifique and the Agence Nationale pour la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Astruc.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astruc, D. Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nature Chem 4, 255–267 (2012). https://doi.org/10.1038/nchem.1304

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing