Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Functionalization of phenylazomethine dendrimers

Abstract

Phenylazomethine dendrimers have metal coordination sites whose base strength gradually increases toward the inner positions due to the potential gradient. This feature enables the stepwise assembly of Lewis acidic molecules and metal salts in the dendrimers. In this review, we focus on functionalities for luminous materials, sensors, and subnanosize reactors based on the structural and electronic nature of the phenylazomethine dendrimer. Integration of the photoluminescent units in a dendrimer is achieved using bismuth salts. A detailed description of the performance of a subnanosized reactor with a reducing capsule method, which is useful for synthesizing ultrasmall metal particles, is provided. The atomicity-controlled assembly feature facilitates the solution-phase synthesis of superatoms that mimic the properties of elemental atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ottaviani MF, Bossmann S, Turro NJ, Tomalia DA. Characterization of starburst dendrimers by the EPR technique. 1. Copper complexes in water solution. J Am Chem Soc. 1994;116:661–71.

    Article  CAS  Google Scholar 

  2. Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed. 1990;29:138–75.

    Article  Google Scholar 

  3. Tomalia DA, Frechet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A: Polym Chem. 2002;40:2719–28.

    Article  CAS  Google Scholar 

  4. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith PA. New class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

    Article  CAS  Google Scholar 

  5. de Brabander-van den Berg EMM, Meijer EW. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed 1993;32:1308–11.

    Article  Google Scholar 

  6. Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999;99:1665–88.

    Article  CAS  PubMed  Google Scholar 

  7. Vögtle F, Gestermann S, Kauffmann C, Ceroni P, Vicinelli V, Balzani V. Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J Am Chem Soc. 2000;122:10398–404.

    Article  Google Scholar 

  8. Higuchi M, Shiki S, Ariga K, Yamamoto K. First synthesis of phenylazomethine dendrimer ligands and structural studies. J Am Chem Soc. 2001;123:4414–20.

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi M, Yamamoto K. Novel π-conjugated nano-supramolecules having fine-controlled metal-assembling functions. Bull Chem Soc Jpn. 2004;77:853–74.

    Article  CAS  Google Scholar 

  10. Yamamoto K, Imaoka T. Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Acc Chem Res. 2014;47:1127–36.

    Article  CAS  PubMed  Google Scholar 

  11. Kitazawa H, Albrecht K, Yamamoto K. Synthesis of a dendrimer reactor for clusters with a magic number. Chem Lett. 2012;41:828–30.

    Article  CAS  Google Scholar 

  12. Kambe T, Haruta N, Imaoka T, Yamamoto K. Solution-phase synthesis of Al13 using a dendrimer template. Nat Commun. 2017;8:2046.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Imaoka T, Kawana Y, Kurokawa T, Yamamoto K. Macromolecular semi-rigid nanocavities for cooperative recognition of specific large molecular shapes. Nat Commun. 2013;4:2581.

    Article  PubMed  Google Scholar 

  14. Suzuki M, Nakajima R, Tsuruta M, Higuchi M, Einaga Y, Yamamoto K. Synthesis of ferrocene-modified phenylazomethine dendrimers possessing redox switching. Macromolecules. 2006;39:64–9.

    Article  CAS  Google Scholar 

  15. Takanashi K, Yamamoto K. Divergent approach for synthesis and terminal modifications of dendritic polyphenylazomethines. Org Lett. 2007;9:5151–4.

    Article  CAS  PubMed  Google Scholar 

  16. Kimoto A, Masachika K, Cho JS, Higuchi M, Yamamoto K. Synthesis and electroluminescence properties of novel main chain poly(p-phenylenevinylene)s possessing pendant phenylazomethine dendrons as metal ligation sites. Chem Mater. 2004;16:5706–12.

    Article  CAS  Google Scholar 

  17. Albrecht K, Kasai Y, Kimoto A, Yamamoto K. The synthesis and properties of carbazole−phenylazomethine double layer-type dendrimers. Macromolecules. 2008;41:3793–800.

    Article  CAS  Google Scholar 

  18. Satoh N, Cho JS, Higuchi M, Yamamoto K. Novel triarylamine dendrimers as a hole-transport material with a controlled metal-assembling function. J Am Chem Soc. 2003;125:8104–5.

    Article  CAS  PubMed  Google Scholar 

  19. Cho JS, Takanashi K, Higuchi M, Yamamoto K. Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes. Synth Met. 2005;150:79–82.

    Article  CAS  Google Scholar 

  20. Albrecht K, Matsuoka K, Fujita K, Yamamoto K. Carbazole dendrimers as solution-processable thermally activated delayed-fluorescence materials. Angew Chem Int Ed. 2015;54:5677–82.

    Article  CAS  Google Scholar 

  21. Matsuoka K, Albrecht K, Yamamoto K, Fujita K. Mono-substituted carbazole dendrimers as solution processable host materials for phosphorescent organic light-emitting diodes. J Photopolym Sci Technol. 2016;29:323–6.

    Article  CAS  Google Scholar 

  22. Matsuoka K, Albrecht K, Yamamoto K, Fujita K. Mulifunctional dendritic emitter: aggregation-induced emission enhanced, thermally activated delayed fluorescent material for solution-processed multilayered organic light-emitting diodes. Sci Rep. 2017;7:41780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Albrecht K, Matsuoka K, Yokoyama D, Sakai Y, Nakayama A, Fujita K, Yamamoto K. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency. Chem Commun. 2017;53:2439–42.

    Article  CAS  Google Scholar 

  24. Matsuoka K, Albrecht K, Nakayama A, Yamamoto K, Fujita K. Highly efficient thermally activated delayed fluorescence organic light-emitting diodes with fully solution-processed organic multilayered architecture: impact of terminal substitution on carbazole–benzophenone dendrimer and interfacial engineering. ACS Appl Mater Interfaces. 2018;10:33343–52.

    Article  CAS  PubMed  Google Scholar 

  25. Albrecht K, Matsuoka K, Fujita K, Yamamoto K. A dendrimer emitter doped in a dendrimer host: efficient thermally activated delayed fluorescence OLEDs with fully-solution processed organic-layers. Mater Chem Front. 2018;2:1097–103.

    Article  CAS  Google Scholar 

  26. Amruth C, Luszczynska B, Szymanski MZ, Ulanski J, Albrecht K, Yamamoto K. Inkjet printing of thermally activated delayed fluorescence (TADF) dendrimer for OLEDs applications. Org Electron. 2019;74:218–27.

    Article  Google Scholar 

  27. Kambe T, Watanabe A, Imaoka T, Yamamoto K. Bismuth complexes in phenylazomethine dendrimers: controllable luminescence and emission in the solid state. Angew Chem Int Ed. 2016;55:13151–4.

    Article  CAS  Google Scholar 

  28. Kambe T, Imaoka S, Imaoka T, Yamamoto K. Build-up enhancement of photoluminescence from phenylazomethine bismuth dendrimer using Bi(OTf)3. J Nanopart Res. 2018;20:118.

    Article  Google Scholar 

  29. Kambe T, Imaoka T, Yamamoto K. Insight into the effect of dendrimer structure on photoluminescence from assembled bismuth complexes. J Inorg Organomet Polym Mater. 2018;28:463–6.

    Article  CAS  Google Scholar 

  30. Kawakami J, Mizuguchi T, Ito S. Poly(amine ester) dendrimer with naphthyl units as a fluorescent chemosensor for Al(III), Cu(II), and Zn(II). Anal Sci. 2006;22:1383–4.

    Article  PubMed  Google Scholar 

  31. Nakajima S, Albrecht K, Kushida S, Nishibori E, Kitao T, Uemura T, Yamamoto K, Bunz UHF, Yamamoto Y. A fluorescent microporous crystalline dendrimer discriminates vapour molecules. Chem Commun. 2018;54:2534–7.

    Article  CAS  Google Scholar 

  32. Satija J, Sai VVR, Mukherji S. Dendrimers in biosensors: concept and applications. J Mater Chem. 2011;21:14367–86.

    Article  CAS  Google Scholar 

  33. Valério C, Fillaut JL, Ruiz J, Guittard J, Blais JC, Astruc D. The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J Am Chem Soc. 1997;119:2588–9.

    Article  Google Scholar 

  34. Daniel MC, Ruiz J, Astruc D. Supramolecular H-bonded assemblies of redox-active metallodendrimers and positive and unusual dendritic effects on the recognition of H2PO4-. J Am Chem Soc. 2003;125:1150–1.

    Article  CAS  PubMed  Google Scholar 

  35. Daniel MC, Ba F, Ruiz J, Astruc D. Assemblies of redox-active metallodendrimers using hydrogen bonding for the electrochemical recognition of the H2PO4- and adenosine-triphosphate (ATP2-) anions. Inorg Chem. 2004;43:8649–57.

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto K, Higuchi M, Shiki S, Tsuruta M, Chiba H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature. 2002;415:50911.

    Article  Google Scholar 

  37. Satoh N, Nakashima T, Kamikura K, Yamamoto K. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol. 2008;3:106–11.

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem. 2009;1:397–402.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi M, Imaoka T, Hongo Y, Yamamoto K. A highly active and poison-tolerant Pt12 sub-nanocluster catalyst for the reductive amination of aldehydes with amines. Dalton Trans. 2013;42:15919–21.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi M, Imaoka T, Hongo Y, Yamamoto K. Formation of a Pt12 cluster by single-atom control that leads to enhanced reactivity: hydrogenation of unreactive olefins. Angew Chem Int Ed. 2013;52:7419–21.

    Article  CAS  Google Scholar 

  41. Takahashi M, Imaoka T, Yamamoto K. Reactivities of platinum subnanocluster catalysts for the oxidation reaction of alcohols. RSC Adv. 2015;5:100693–6.

    Article  CAS  Google Scholar 

  42. Inomata Y, Albrecht K, Yamamoto K. Size-dependent oxidation state and CO oxidation activity of tin oxide clusters. ACS Catal. 2018;8:451–6.

    Article  CAS  Google Scholar 

  43. Huda M, Minamisawa K, Tsukamoto T, Tanabe M, Yamamoto K. Aerobic toluene oxidation catalyzed by subnano metal particles. Angew Chem Int Ed. 2019;58:1002–6.

    Article  CAS  Google Scholar 

  44. Yamamoto K, Imaoka T, Tanabe M, Kambe T. New Horizon Of Nanoparticle And Cluster Catalysis With Dendrimers. Chem Rev. 2020;120:1397–437.

    Article  CAS  PubMed  Google Scholar 

  45. Kambe T, Imaoka S, Hasegawa R, Tsukamoto T, Imaoka T, Natsui K, Einaga Y, Yamamoto K. Electrochemical measurement of bismuth clusters in dendrimer through transformation from atomicity controlled complexes. J Inorg Organomet Polym Mater. 2020;30:169–73.

    Article  CAS  Google Scholar 

  46. Imaoka T, Kitazawa H, Chun WJ, Omura S, Albrecht K, Yamamoto K. Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst? J Am Chem Soc. 2013;135:13089–95.

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto K, Imaoka T. Dendrimer complexes based on fine-controlled metal assembling. Bull Chem Soc Jpn. 2006;79:511–26.

    Article  CAS  Google Scholar 

  48. Wakizaka M, Imaoka T, Yamamoto K. Composition-defined nanosized assemblies that contain heterometallic early 4d/5d-transition-metals. Dalton Trans. 2019;48:14261–8.

    Article  CAS  PubMed  Google Scholar 

  49. Tsukamoto T, Kambe T, Nakao A, Imaoka T, Yamamoto K. Atom-hybridization for synthesis of polymetallic clusters. Nat Commun. 2018;9:3873.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nakamula I, Yamanoi Y, Imaoka T, Yamamoto K, Nishihara H. A uniform bimetallic rhodium/iron nanoparticle catalyst for the hydrogenation of olefins and nitroarenes. Angew Chem Int Ed. 2011;50:5830–3.

    Article  CAS  Google Scholar 

  51. Takahashi M, Koizumi H, Chun WJ, Kori M, Imaoka T, Yamamoto K. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons. Sci Adv. 2017;3:e1700101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moriai T, Tsukamoto T, Tanabe M, Kambe T, Yamamoto K. Selective hydroperoxygenation of olefins realized by a coinage multimetallic 1‐nanometer catalyst. Angew Chem Int Ed. 2020;59:23051–5.

    Article  CAS  Google Scholar 

  53. Kambe T, Imaoka T, Yamamoto K. Reducing capsule based on electron programming: versatile synthesizer for size‐controlled ultra‐small metal clusters. Chem Eur J. 2016;22:16406–9.

    Article  PubMed  Google Scholar 

  54. Khannna SN, Jena P. Atomic clusters: building blocks for a class of solids. Phys Rev B. 1995;51:13705–16.

    Article  Google Scholar 

  55. Luo Z, Grover CJ, Reber AC, Khanna SN, Castleman AW. Probing the magic numbers of aluminum–magnesium cluster anions and their reactivity toward oxygen. J Am Chem Soc. 2013;135:4307–13.

    Article  CAS  PubMed  Google Scholar 

  56. Bergeron DE, Castleman AW, Morisato T, Khanna SN. Formation of Al13I-: evidence for the superhalogen character of Al13. Science. 2004;304:84–7.

    Article  CAS  PubMed  Google Scholar 

  57. Luo Z, Castleman AW. Special and general superatoms. Acc Chem Res. 2014;47:2931–40.

    Article  CAS  PubMed  Google Scholar 

  58. Luo Z, Berkdemir C, Smith JC, Castleman AW. Cluster reaction of [Ag8]/[Cu8] with chlorine: evidence for the harpoon mechanism? Chem Phys Lett. 2013;582:24–30.

    Article  CAS  Google Scholar 

  59. Zhang X, Wang Y, Wang H, Lim A, Gantefoer G, Bowen KH, Reveles JU, Khanna SN. On the existence of designer magnetic superatoms. J Am Chem Soc. 2013;135:4856–61.

    Article  CAS  PubMed  Google Scholar 

  60. Albrecht K, Hirabayashi Y, Otake M, Mendori S, Tobari Y, Azuma Y, Majima Y, Yamamoto K. Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer. Sci Adv. 2016;2:e1601414.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Takane Imaoka (Tokyo Institute of Technology) and Takamasa Tsukamoto (Tokyo Institute of Technology) for their assistance with this review. The work was financially supported in part by JST ERATO Grant Number JPMJER1503 and JSPS KAKENHI Grant Nos. JP 15H05757, JP 20K05538 and JP 21H05023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimihisa Yamamoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambe, T., Yamamoto, K. Functionalization of phenylazomethine dendrimers. Polym J 54, 97–105 (2022). https://doi.org/10.1038/s41428-021-00524-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00524-9

Search

Quick links