Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectroscopic visualization of sound-induced liquid vibrations using a supramolecular nanofibre

Abstract

The question of whether sound vibration of a medium can bring about any kind of molecular or macromolecular events is a long-standing scientific controversy. Although it is known that ultrasonic vibrations with frequencies of more than 1 MHz are able to align certain macromolecules in solution, no effect has yet been reported with audible sound, the frequency of which is much lower (20–20,000 Hz). Here, we report on the design of a supramolecular nanofibre that in solution becomes preferentially aligned parallel to the propagation direction of audible sound. This phenomenon can be used to spectroscopically visualize sound-induced vibrations in liquids and may find application in a wide range of vibration sensing technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zinc porphyrin derivatives for self-assembly.
Figure 2: Electron micrographs of self-assembled nanofibres formed from zinc porphyrin 1.
Figure 3: 1H NMR spectra of self-assembled zinc porphyrin 2.
Figure 4: Effect of liquid vibrations generated by sound irradiation on the alignment of nanofibres.
Figure 5: Spectroscopic visualization of sound-induced liquid vibrations with self-assembled 1.
Figure 6: Pointwise spectroscopic visualization of sound-induced liquid vibrations in masked cuvettes and an L-shaped cuvette containing a solution of self-assembled 1.

Similar content being viewed by others

References

  1. Beranek, L. L. Acoustics (McGraw-Hill, 1954).

    Google Scholar 

  2. Komatsu, A. Food Science Journal [in Japanese] 203, 52–62 (1995).

    Google Scholar 

  3. Shilton, R., Tan, M. K., Yeo, L. Y. & Friend, J. R. Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J. Appl. Phys. 104, 014910 (2008).

    Article  Google Scholar 

  4. Alvarez, M., Friend, J. R. & Yeo, L. Y. Surface vibration induced spatial ordering of periodic polymer patterns on a substrate. Langmuir 24, 10629–10632 (2008).

    Article  CAS  Google Scholar 

  5. Friend, J. R., Yeo, L. Y., Arifin, D. R. & Mechler, A. Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization. Nanotechnology 19, 145301 (2008).

    Article  Google Scholar 

  6. Kawamura, H. Kagaku [in Japanese] 7, 6–7 (1938).

    Google Scholar 

  7. Lipeles, R. & Kivelson, D. Experimental studies of acoustically induced birefringence. J. Chem. Phys. 72, 6199–6208 (1980).

    Article  CAS  Google Scholar 

  8. Yasuda, K., Matsuoka, T., Koda, S. & Nomura, H. Dynamics of V2O5 sol by measurement of ultrasonically induced birefringence. Jpn J. Appl. Phys. 33, 2901–2904 (1994).

    Article  CAS  Google Scholar 

  9. Yasuda, K., Matsuoka, T., Koda, S. & Nomura, H. Dynamics of entanglement networks of rodlike micelles studied by measurements of ultrasonically induced birefringence. J. Phys. Chem. B 101, 1138–1141 (1997).

    Article  CAS  Google Scholar 

  10. Nomura, H., Matsuoka, T. & Koda, S. Ultrasonically induced birefringence in polymer solutions. Pure Appl. Chem. 76, 97–104 (2004).

    Article  CAS  Google Scholar 

  11. Yamaguchi, T., Kimura, T., Matsuda, H. & Aida, T. Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew Chem. Int. Ed. 43, 6350–6355 (2004).

    Article  CAS  Google Scholar 

  12. Tsuda, A. et al. Spectroscopic visualization of dynamic vortex flows using a dye-containing nanofiber. Angew Chem. Int. Ed. 46, 8198–8202 (2007).

    Article  CAS  Google Scholar 

  13. Wolffs, M. et al. Macroscopic origin of circular dichroism effects by alignment of self-assembled fibers in solution. Angew. Chem. Int. Ed. 46, 8203–8205 (2007).

    Article  CAS  Google Scholar 

  14. de Greef, T. F. A. & Meijer, E. W. Supramolecular polymers. Nature 453, 171–173 (2008).

    Article  CAS  Google Scholar 

  15. Chen, Z., Lohr, A., Saha-Möller, C. R. & Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 38, 564–584 (2009).

    Article  CAS  Google Scholar 

  16. Chi, X., Guerin, A. J., Haycock, R. A., Hunter, C. A. & Sarson, L. D. Self-assembly of macrocyclic porphyrin oligomers. Chem. Commun. 2567–2568 (1995).

  17. Tsuda, A., Nakamura, T., Sakamoto, S., Yamaguchi, K. & Osuka, A. A self-assembled porphyrin box from meso-meso-linked bis{5-p-pyridyl-15-(3,5-di-octyloxyphenyl)porphyrinato zinc(II)}. Angew Chem. Int. Ed. 41, 2817–2821 (2002).

    Article  CAS  Google Scholar 

  18. Fukushima, K. et al. Synthesis and properties of Rhodium(III) porphyrin cyclic tetramer and cofacial dimer. Inorg. Chem. 42, 3187–3193 (2003).

    Article  CAS  Google Scholar 

  19. Tsuda, A., Hu, H., Tanaka, R. & Aida, T. Planar or perpendicular? Conformational preferences of π-conjugated metalloporphyrin dimers and trimers in supramolecular tubular arrays. Angew Chem. Int. Ed. 44, 4884–4888 (2005).

    Article  CAS  Google Scholar 

  20. Aimi, J. et al. ‘Conformational’ solvatochromism: spatial discrimination of nonpolar solvents using a supramolecular box of a π-conjugated zinc bisporphyrin rotamer. Angew Chem. Int. Ed. 47, 5153–5156 (2008).

    Article  CAS  Google Scholar 

  21. Shi, X., Barkigia, K. M., Fajer, J. & Drain, C. M. Design and synthesis of porphyrins bearing rigid hydrogen bonding motifs: highly versatile building blocks for self-assembly of polymers and discrete arrays. J. Org. Chem. 66, 6513–6522 (2001).

    Article  CAS  Google Scholar 

  22. Shoji, O., Tanaka, H., Kawai, T. & Kobuke, Y. Single molecule visualization of coordination-assembled porphyrin macrocycles reinforced with covalent linkings. J. Am. Chem. Soc. 127, 8598–8599 (2005).

    Article  CAS  Google Scholar 

  23. Michelsen, U. & Hunter, C. A. Self-assembled porphyrin polymers. Angew Chem. Int. Ed. 39, 764–767 (2000).

    Article  CAS  Google Scholar 

  24. Ogawa, K. & Kobuke, Y. Formation of a giant supramolecular porphyrin array by self-coordination. Angew Chem. Int. Ed. 39, 4070–4073 (2000).

    Article  CAS  Google Scholar 

  25. Hameren, R. V. et al. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 314, 1433–1436 (2006).

    Article  Google Scholar 

  26. Wang, Z., Medforth, C. J. & Shelnutt, J. A. Porphyrin nanotubes by ionic self-assembly. J. Am. Chem. Soc. 126, 15954–15955 (2004).

    Article  CAS  Google Scholar 

  27. Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).

    Article  CAS  Google Scholar 

  28. Hirschberg, J. H. K. K. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).

    Article  CAS  Google Scholar 

  29. Rajendra, J., Baxendale, M., Rap, L. G. T. & Rodger, A. Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 11182–11188 (2004).

    Article  CAS  Google Scholar 

  30. Adachi, K. & Watarai, H. Two-phase Couette flow linear dichroism measurement of the shear-forced orientation of a palladium(II)-induced aggregate of thioether-derivatized subphthalocyanines at the toluene/glycerol interface. New J. Chem. 30, 343–348 (2006).

    Article  CAS  Google Scholar 

  31. Marrington, R. et al. Validation of new microvolume Couette flow linear dichroism cells. Analyst 130, 1608–1616 (2005).

    Article  CAS  Google Scholar 

  32. Yoshimura, T., Sakashita, H. & Wakabayashi, N. Real-time measurements of spatial velocity distribution with a laser Doppler imaging system. Appl. Opt. 22, 2448–2452 (1983).

    Article  CAS  Google Scholar 

  33. Yoshida, N., Aratani, N. & Osuka, A. Poly(zinc(II)-5,15-porphyrinylene) from silver(I)-promoted oxidation of zinc(II)-5,15-diarylporphyrins. Chem. Commun. 197–198 (2000).

Download references

Acknowledgements

The present work was sponsored by a Grant-in-Aid for Scientific Research (B) (no. 22350061) from the Ministry of Education, Science, Sports and Culture, Japan, by JST, Research Seeds Program, by Hyogo Science and Technology Association and by TEPCO Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.T. conceived and directed the project, contributed to all experiments, and wrote the paper. Y.N. and R.W. performed syntheses and spectroscopic studies. Y.N. carried out characterization of aerial sound waves. N.I. carried out TEM measurements. T.A. directed the study and contributed to the execution of the experiments and interpretation of results.

Corresponding authors

Correspondence to Akihiko Tsuda or Takuzo Aida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1290 kb)

Supplementary information

Supplementary movie S1 (MOV 7720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuda, A., Nagamine, Y., Watanabe, R. et al. Spectroscopic visualization of sound-induced liquid vibrations using a supramolecular nanofibre. Nature Chem 2, 977–983 (2010). https://doi.org/10.1038/nchem.825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing