'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization

Journal name:
Nature Chemistry
Volume:
2,
Pages:
811–820
Year published:
DOI:
doi:10.1038/nchem.853
Published online

Abstract

Reversible addition-fragmentation chain-transfer (RAFT) polymerization has revolutionized the field of polymer synthesis as a versatile tool for the production of complex polymeric architectures. As for all chemical processes, research and development in RAFT have to focus on the design and application of chemical products and processes that have a minimum environmental impact, and follow the principles of 'green' chemistry. In this Review, we summarize some of the green features of the RAFT process, and review the recent advances in the production of degradable polymers obtained from RAFT polymerization. Its use to modify biodegradable and renewable inorganic and organic materials to yield more functional products with enhanced applications is also covered. RAFT is a promising candidate for answering both the increasing need of modern society to employ highly functional polymeric materials and the global requirements for developing sustainable chemicals and processes.

At a glance

Figures

  1. Generally accepted mechanism for RAFT polymerization.
    Figure 1: Generally accepted mechanism for RAFT polymerization.

    Following initiation, as in conventional free-radical polymerization (i), the radical reversibly adds onto the chain transfer agent 1 to form an intermediate radical 2, which can fragment to liberate a reinitiating group and form a new dormant chain 3 (ii). The new radical reinitiates polymerization by reaction on monomers (iii). The rapid establishment of this reversible addition-fragmentation equilibrium (iv) allows for control over molecular weight and molecular-weight distribution, although irreversible termination reactions still occur, mainly due to the free radical introduced initially to initiate polymerization (v).

  2. Two examples of monomers able to undergo radical ring-opening polymerization.
    Figure 2: Two examples of monomers able to undergo radical ring-opening polymerization.

    The addition of a radical group R on the vinyl bond triggers the opening of the ring to incorporate cleavable bonds in the backbone of a polymer, for instance by using a, a functional cyclic ketene acetal monomer (R2, R3 and R4 are alkyl-based functional groups)41 or b, a cyclic allylic sulfide monomer containing a cleavable ester, thioester or disulfide group48 (R1).

  3. Synthetic route to polymer-grafted silica particles by Z-supported RAFT polymerization.
    Figure 3: Synthetic route to polymer-grafted silica particles by Z-supported RAFT polymerization.

    Silica particles are functionalized with 4-(chloromethyl)phenyltrimethoxysilane (i) followed by addition of 3-(methoxycarbonylphenylmethylsulfanylthiocarbonylsulfanyl)propionic acid (MPPA; ii) to produce a RAFT agent tethered to the silica support via its Z group. Sequential addition of monomer M1 and M2 leads to the production of diblock copolymers grafted on the silica particles74.

  4. Synthesis of silica nanocomposites via grafting through.
    Figure 4: Synthesis of silica nanocomposites via grafting through.

    Silica particles are modified with methacryloxypropyldimethylchlorosilane (MCPDCS) to introduce a methacrylate group (i), which is copolymerized with MMA via RAFT polymerization to yield PMMA-silica nanocomposites86 (ii).

  5. Grafting polyacrylamide to silica particles via combination of RAFT polymerization and click chemistry.
    Figure 5: Grafting polyacrylamide to silica particles via combination of RAFT polymerization and click chemistry.

    Azide-functional silica particles are reacted with alkyne-functional polyacrylamides via copper catalysed cycloaddition (click coupling)89, 90.

  6. Functionalization of TiO2 and formation of polyacrylic acid-TiO2 nanocomposite.
    Figure 6: Functionalization of TiO2 and formation of polyacrylic acid-TiO2 nanocomposite.

    The RAFT agent (2-{[(butylsulfanyl)carbonothioyl]sulfanyl}propanoic acid) is tethered to the titanium nanoparticles (i) and used to mediate the polymerization of acrylic acid (AA) to yield polyacrylic acid grafted onto n-TiO2 particles94 (ii).

  7. Solid-supported chain-transfer agent.
    Figure 7: Solid-supported chain-transfer agent.

    A cellulose-based Whatman filter paper is esterified with 2-chloro-2-phenylacety chloride (CPAC, step i) to yield a cellulose chloride derivative, which is in turn reacted with dithiobenzoate magnesium chloride (ii) to prepare a cellulose-supported dithiobenzoate RAFT agent98.

References

  1. Brennecke, J. F. & Allen, D. T. Green chemistry and engineering. Ind. Eng. Chem. Res. 41, 4439 (2002).
  2. Anastas, P. T. & Warner, J. C. The Twelve Principles of Green Chemistry (Oxford Univ. Press, 1998).
  3. Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 36613688 (2001).
  4. Chiefari, J. et al. Living free-radical polymerization by reversible addition fragmentation chain transfer: The RAFT process. Macromolecules 31, 55595562 (1998).
  5. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 29212990 (2001).
  6. McLeary, J. B. et al. A 1H NMR investigation of reversible addition-fragmentation chain transfer polymerization kinetics and mechanisms. Initialization with different initiating and leaving groups. Macromolecules 38, 31513161 (2005).
  7. Buback, M., Meiser, W. & Vana, P. Mechanism of CPDB-mediated RAFT polymerization of methyl methacrylate: Influence of pressure and RAFT agent concentration. Aust. J. Chem. 62, 14841487 (2009).
  8. Heidenreich, A. J. & Puskas, J. E. Synthesis of arborescent (dendritic) polystyrenes via controlled inimer-type reversible addition-fragmentation chain transfer polymerization. J. Polym. Sci. A 46, 76217627 (2008).
  9. Yu, B. & Lowe, A. B. Synthesis of di- and tri-tertiary amine containing methacrylic monomers and their (co)polymerization via RAFT. J. Polym. Sci. A 47, 18771890 (2009).
  10. Perrier, S., Barner-Kowollik, C., Quinn, J. F., Vana, P. & Davis, T. P. Origin of inhibition effects in the reversible addition fragmentation chain transfer (RAFT) polymerization of methyl acrylate. Macromolecules 35, 83008306 (2002).
  11. Wood, M. R., Duncalf, D. J., Findlay, P., Rannard, S. P. & Perrier, S. Investigation of the experimental factors affecting the trithiocarbonate-mediated RAFT polymerization of methyl acrylate. Aust. J. Chem. 60, 772778 (2007).
  12. Cunningham, M. F. Controlled/living radical polymerization in aqueous dispersed systems. Prog. Polym. Sci. 33, 365398 (2008).
  13. Lowe, A. B. & McCormick, C. L. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog. Polym. Sci. 32, 283351 (2007).
  14. McCormick, C. L., Sumerlin, B. S., Lokitz, B. S. & Stempka, J. E. RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter 4, 17601773 (2008).
  15. York, A. W., Kirkland, S. E. & McCormick, C. L. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery. Adv. Drug Delivery Rev. 60, 10181036 (2008).
  16. Thurecht, K. J. et al. Simultaneous enzymatic ring opening polymerization and RAFT-mediated polymerization in supercritical CO2 . Chem. Commun. 43834385 (2006).
  17. Gregory, A. M., Thurecht, K. J. & Howdle, S. M. Controlled dispersion polymerization of methyl methacrylate in supercritical carbon dioxide via RAFT. Macromolecules 41, 12151222 (2008).
  18. Hasell, T., Thurecht, K. J., Jones, R. D. W., Brown, P. D. & Howdle, S. M. Novel one pot synthesis of silver nanoparticle-polymer composites by supercritical CO2 polymerization in the presence of a RAFT agent. Chem. Commun. 39333935 (2007).
  19. Lee, H. et al. Successful dispersion polymerization in supercritical CO2 using polyvinyl alkylate hydrocarbon surfactants synthesized and anchored via RAFT. J. Am. Chem. Soc. 130, 1224212243 (2008).
  20. Ribaut, T., Lacroix-Desmazes, P., Fournel, B. & Sarrade, S. Synthesis of gradient copolymers with complexing groups by RAFT polymerization and their solubility in supercritical CO2 . J. Polym. Sci. A 47, 54485460 (2009).
  21. Zetterlund, P. B., Aldabbagh, F. & Okubo, M. Controlled/living heterogeneous radical polymerization in supercritical carbon dioxide. J. Polym. Sci. A 47, 37113728 (2009).
  22. Perrier, S., Davis, T. P., Carmichael, A. J. & Haddleton, D. M. First report of reversible addition-fragmentation chain transfer (RAFT) polymerization in room temperature ionic liquids. Chem. Commun. 22262227 (2002).
  23. Perrier, S., Davis, T. P., Carmichael, A. J. & Haddleton, D. M. Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexafluorophosphate. Eur. Polym. J. 39, 417422 (2003).
  24. Mori, H., Yahagi, M. & Endo, T. RAFT polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block copolymers. Macromolecules 42, 80828092 (2009).
  25. Johnston-Hall, G., Harjani, J. R., Scammells, P. J. & Monteiro, M. J. RAFT-mediated polymerization of styrene in readily biodegradable ionic liquids. Macromolecules 42, 16041609 (2009).
  26. Puttick, S., Irvine, D. J., Licence, P. & Thurecht, K. J. RAFT-functional ionic liquids: towards understanding controlled free radical polymerization in ionic liquids. J. Mater. Chem. 19, 26792682 (2009).
  27. Quinn, J. F., Davis, T. P. & Rizzardo, E. Ambient temperature reversible addition-fragmentation chain transfer polymerization. Chem. Commun. 10441045 (2001).
  28. Convertine, A. J., Ayres, N., Scales, C. W., Lowe, A. B. & McCormick, C. L. Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules 5, 11771180 (2004).
  29. Convertine, A. J. et al. Aqueous RAFT polymerization of acrylamide and N,N-dimethylacrylamide at room temperature. Macromol. Rapid Commun. 26, 791795 (2005).
  30. Convertine, A. J. et al. Direct synthesis of thermally responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 39, 17241730 (2006).
  31. Bai, W., Zhang, L., Bai, R. & Zhang, G. A very useful redox initiator for aqueous RAFT polymerization of N-isopropylacrylamide and acrylamide at room temperature. Macromol. Rapid Commun. 29, 562566 (2008).
  32. Zheng, H., Bai, W., Hu, K., Bai, R. & Pan, C. Facile room temperature RAFT polymerization via redox initiation. J. Polym. Sci. A 46, 25752580 (2008).
  33. Li, G., Zheng, H. & Bai, R. A facile strategy for the preparation of azide polymers via room temperature RAFT polymerization by redox initiation. Macromol. Rapid Commun. 30, 442447 (2009).
  34. An, Z. et al. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 129, 1449314499 (2007).
  35. Assem, Y., Greiner, A. & Agarwal, S. Microwave-assisted controlled ring-closing cyclopolymerization of diallyldimethylammonium chloride via the RAFT process. Macromol. Rapid Commun. 28, 19231928 (2007).
  36. Brown, S. L. et al. Ultra-fast microwave enhanced reversible addition-fragmentation chain transfer (RAFT) polymerization: monomers to polymers in minutes. Chem. Commun. s21452147 (2007).
  37. Nguyen, C. T., Nghiem, Q. D., Kim, D.-P., Chang, J. S. & Hwang, Y. K. Microwave assisted synthesis of high molecular weight polyvinylsilazane via RAFT process. Polymer 50, 50375041 (2009).
  38. Paulus, R. M., Becer, C. R., Hoogenboom, R. & Schubert, U. S. High temperature initiator-free RAFT polymerization of methyl methacrylate in a microwave reactor. Aust. J. Chem. 62, 254259 (2009).
  39. Roy, D., Ullah, A. & Sumerlin, B. S. Rapid block copolymer synthesis by microwave-assisted RAFT polymerization. Macromolecules 42, 77017708 (2009).
  40. Zhu, J., Zhu, X., Zhang, Z. & Cheng, Z. Reversible addition-fragmentation chain transfer polymerization of styrene under microwave irradiation. J. Polym. Sci. A 44, 68106816 (2006).
  41. He, T., Zou, Y.-F. & Pan, C.-Y. Controlled/“living” radical ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxepane based on reversible addition-fragmentation chain transfer mechanism. Polym. J. 34, 138143 (2002).
  42. Siegwart, D. J., Bencherif, S. A., Srinivasan, A., Hollinger, J. O. & Matyjaszewski, K. Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6- benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels. J. Biomed. Mater. Res. A 87A, 345358 (2008).
  43. Mori, H., Masuda, S. & Endo, T. Ring-opening RAFT polymerization based on aromatization as driving force: Synthesis of well-defined polymers containing anthracene units in the main chain. Macromolecules 39, 59765978 (2006); ibid Ring-opening copolymerization of 10-methylene-9,10- dihydroanthryl-9-spirophenylcyclopropane via free radical and RAFT processes. Macromolecules 41, 632639 (2008).
  44. Hong, J., Wang, Q. & Fan, Z. Synthesis of multiblock polymer containing narrow polydispersity blocks. Macromol. Rapid Commun. 27, 5762 (2006).
  45. Hong, J., Wang, Q., Lin, Y. & Fan, Z. Styrene polymerization in the presence of cyclic trithiocarbonate. Macromolecules 38, 26912695 (2005).
  46. Lei, P., Wang, Q., Hong, J. & Li, Y. Synthesis of poly(n-butyl acrylate) containing multiblocks with a narrow molecular weight distribution using cyclic trithiocarbonates. J. Polym. Sci. A 44, 66006606 (2006).
  47. Zhang, L. et al. Multiblock poly(4-vinylpyridine) and its copolymer prepared with cyclic trithiocarbonate as a reversible addition-fragmentation transfer agent. J. Polym. Sci. A 45, 26172623 (2007).
  48. Paulusse, J. M. J., Amir, R. J., Evans, R. A. & Hawker, C. J. Free radical polymers with tunable and selective bio- and chemical degradability. J. Am. Chem. Soc. 131, 98059812 (2009).
  49. Rosselgong, J., Armes, S. P., Barton, W. & Price, D. Synthesis of highly branched methacrylic copolymers: Observation of near-ideal behavior using RAFT polymerization. Macromolecules 42, 59195924, (2009).
  50. Vo, C.-D., Rosselgong, J., Armes, S. P. & Billingham, N. C. RAFT synthesis of branched acrylic copolymers. Macromolecules 40, 71197125, (2007).
  51. Setijadi, E. et al. Biodegradable star polymers functionalized with cyclodextrin inclusion complexes. Biomacromolecules 10, 26992707, (2009).
  52. Coulembier, O. et al. Alcohol adducts of N-heterocyclic carbenes: latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39, 56175628 (2006).
  53. Fustin, C.-A. et al. Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers. Langmuir 22, 66906695 (2006).
  54. Wu, D.-Q. et al. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release. Biomacromolecules 9, 11551162 (2008).
  55. Shi, P.-J., Li, Y.-G. & Pan, C.-Y. Block and star block copolymers by mechanism transformation X. Synthesis of poly(ethylene oxide) methyl ether/polystyrene/poly(l-lactide) ABC miktoarm star copolymers by combination of RAFT and ROP. Eur. Polym. J. 40, 12831290 (2004).
  56. Mespouille, L., Nederberg, F., Hedrick, J. L. & Dubois, P. Broadening the scope of functional groups accessible in aliphatic polycarbonates by the introduction of RAFT initiating sites. Macromolecules 42, 63196321 (2009).
  57. Le Hellaye, M., Lefay, C., Davis, T. P., Stenzel, M. H. & Barner-Kowollik, C. Simultaneous reversible addition fragmentation chain transfer and ring-opening polymerization. J. Polym. Sci. A 46, 30583067 (2008).
  58. Nebhani, L. et al. Efficient surface modification of divinylbenzene microspheres via a combination of RAFT and hetero Diels-Alder chemistry. Macromol. Rapid Commun. 29, 14311437 (2008).
  59. Xu, X. & Huang, J. Synthesis and characterization of amphiphilic copolymer of linear poly(ethylene oxide) linked with [poly(styrene-co-2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone)] using sequential controlled polymerization. J. Polym. Sci. A 44, 467476 (2005).
  60. Luan, B., Zhang, B.-Q. & Pan, C.-Y. Synthesis and characterizations of well-defined branched polymers with AB2 branches by combination of RAFT polymerization and ROP as well as ATRP. J. Polym. Sci. A 44, 549560 (2005).
  61. Kakwere, H. & Perrier, S. Facile synthesis of star-shaped copolymers via combination of RAFT and ring opening polymerization. J. Polym. Sci. A 47, 63966408 (2009).
  62. Stanford, M. J. & Dove, A. P. One-pot synthesis of chain end functional, stereoregular, star-shaped poly(lactide). Macromolecules 42, 141147 (2009).
  63. Yang, L., Zhou, H., Shi, G., Wang, Y. & Pan, C.-Y. Synthesis of ABCD 4-miktoarm star polymers by combination of RAFT, ROP, and “click chemistry”. J. Polym. Sci. A. 46, 66416653 (2008).
  64. Vora, A., Singh, K. & Webster, D. C. A new approach to 3-miktoarm star polymers using a combination of reversible addition-fragmentation chain transfer (RAFT) and ring opening polymerization (ROP) via “Click” chemistry. Polymer 50, 27682774 (2009).
  65. Li, A. L., Wang, Y., Liang, H. & Lu, J. Controlled radical copolymerization of beta-pinene and acrylonitrile. J. Polym. Sci. A 44, 23762387 (2006).
  66. Wang, Y., Li, A. L., Liang, H. & Lu, J. Reversible addition-fragmentation chain transfer radical copolymerization of beta-pinene and methyl acrylate. Eur. Polym. J. 42, 26952702 (2006).
  67. Li, A. L., Wang, X. Y., Liang, H. & Lu, J. Controlled radical copolymerization of beta-pinene and n-butyl acrylate. React. Funct. Polym. 67, 481488 (2007).
  68. Wang, Y., Chen, Q., Liang, H. & Lu, J. Conventional and RAFT radical copolymerizations of beta-pinene with N-substituted maleimides. Polym. Int. 56, 15141520 (2007).
  69. Boyer, C. et al. Bioapplications of RAFT polymerization. Chem. Rev. 109, 54025436 (2009).
  70. Tsujii, Y., Ejaz, M., Sato, K., Goto, A. & Fukuda, T. Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. experimental evidence of surface radical migration. Macromolecules 34, 88728878 (2001).
  71. Li, C. & Benicewicz, B. C. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38, 59295936 (2005).
  72. Li, C., Han, J., Ryu, C. Y. & Benicewicz, B. C. A Versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 39, 31753183 (2006).
  73. Perrier, S., Takolpuckdee, P. & Mars, C. A. Reversible addition-fragmentation chain transfer polymerization mediated by a solid supported chain transfer agent. Macromolecules 38, 67706774 (2005).
  74. Zhao, Y. & Perrier, S. Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization. Macromolecules 39, 86038608 (2006).
  75. Zhao, Y. & Perrier, S. Synthesis of poly(methyl acrylate) grafted onto silica particles by Z-supported RAFT polymerization. Macromol. Symp. 248, 94103 (2007).
  76. Zhao, Y. & Perrier, S. Reversible addition-fragmentation chain transfer graft polymerization mediated by fumed silica supported chain transfer agents. Macromolecules 40, 91169124 (2007).
  77. Huang, Y., Liu, Q., Zhou, X., Perrier, S. b. & Zhao, Y. Synthesis of silica particles grafted with well-defined living polymeric chains by combination of RAFT polymerization and coupling reaction. Macromolecules 42, 55095517 (2009).
  78. Nguyen, D. H. & Vana, P. Silica-immobilized cumyl dithiobenzoate as mediating agent in reversible addition fragmentation chain transfer (RAFT) polymerization. Polym. Adv. Technol. 17, 625633 (2006).
  79. Perrier, S., Takolpuckdee, P. & Mars, C. A. Reversible addition-fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules 38, 20332036 (2005).
  80. Rotzoll, R. & Vana, P. Synthesis of poly(methyl acrylate) loops grafted onto silica nanoparticles via reversible addition-fragmentation chain transfer polymerization. J. Polym. Sci. A 46, 76567666 (2008).
  81. Rotzoll, R., Nguyen, D. H. & Vana, P. I. Controlled radical polimerization trithiocarbonates containing trimethoxysilyl functionalities as mediating agents in reversible addition-fragmentation chain transfer (RAFT) Polymerization of methyl acrylate. Macromol. Symp. 275–276, 112 (2009).
  82. Rotzoll, R. & Vana, P. A Bipedal silica-immobilized azo-initiator for surface-confined radical polymerizations. Aust. J. Chem. 62, 14731478 (2009).
  83. Lu, C.-H. et al. Surface-imprinted core-shell nanoparticles for sorbent assays. Anal. Chem. 79, 54575461 (2007).
  84. Hua, D. et al. Controlled grafting modification of silica gel via RAFT polymerization under ultrasonic irradiation. Mater. Chem. Phys. 114, 402406 (2009).
  85. Guo, T.-Y., Liu, P., Zhu, J.-W., Song, M.-D. & Zhang, B.-H. Well-defined lactose-containing polymer grafted onto silica particles. Biomacromolecules 7, 11961202 (2006).
  86. Chinthamanipeta, P. S., Kobukata, S., Nakata, H. & Shipp, D. A. Synthesis of poly(methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49, 56365642 (2008).
  87. Wikberg, E., Verhage, J. J., Viklund, C. & Irgum, K. Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC. J. Sep. Sci. 32, 20082016 (2009).
  88. Titirici, M.-M. & Sellergren, B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem. Mater. 18, 17731779 (2006).
  89. Ranjan, R. & Brittain, W. J. Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40, 6217622 (2007).
  90. Ranjan, R. & Brittain, W. J. Tandem RAFT polymerization and click chemistry: An efficient approach to surface modification. Macromol. Rapid Commun. 28, 20842089 (2007).
  91. Salem, N. & Shipp, D. A. Polymer-layered silicate nanocomposites prepared through in situ reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer 46, 85738581 (2005).
  92. Samakande, A., Sanderson, R. D. & Hartmann, P. C. Synthesis and Characterization of novel quaternary ammonium RAFT agents. Synth. Commun. 37, 38613872 (2007).
  93. Samakande, A., Sanderson, R. D. & Hartmann, P. C. Encapsulated clay particles in polystyrene by RAFT mediated miniemulsion polymerization. J. Polym. Sci. A 46, 71147126 (2008).
  94. Hojjati, B., Sui, R. & Charpentier, P. A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer 48, 58505858 (2007).
  95. Ngo, V. G., Bressy, C., Leroux, C. & Margaillan, A. Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process. Polymer 50, 30953102 (2009).
  96. Lowes, B. J., Bohrer, A. G., Tran, T. & Shipp, D. A. Grafting of polystyrene “from” and “through” surface modified titania nanoparticles. Polym. Bull. 62, 281289 (2009).
  97. Takolpuckdee, P., Westwood, J., Lewis, D. M. & Perrier, S. Polymer architectures via reversible addition fragmentation chain transfer (RAFT) polymerization. Macromol. Symp. 216, 2336 (2004).
  98. Roy, D., Guthrie, J. T. & Perrier, S. Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38, 1036310372 (2005).
  99. Roy, D., Guthrie, J. T. & Perrier, S. RAFT Graft polymerization of 2-(dimethylaminoethyl) methacrylate onto cellulose fibre. Aust. J. Chem. 59, 737741 (2006).
  100. Roy, D., Knapp, J. S., Guthrie, J. T. & Perrier, S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9, 9199 (2007).
  101. Barsbay, M. et al. Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40, 71407147 (2007).
  102. Barsbay, M., Güven, O., Davis, T. P., Barner-Kowollik, C. & Barner, L. RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50, 973982 (2009).
  103. Stenzel, M. H., Davis, T. P. & Fane, A. G. Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. J. Mater. Chem. 13, 20902097 (2003).
  104. Hernández-Guerrero, M., Davis, T. P., Barner-Kowollik, C. & Stenzel, M. H. Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur. Polym. J. 41, 22642277 (2005).
  105. Fleet, R. et al. RAFT mediated polysaccharide copolymers. Eur. Polym. J. 44, 28992911 (2008).
  106. Hua, D., Tang, J., Cheng, J., Deng, W. & Zhu, X. A novel method of controlled grafting modification of chitosan via RAFT polymerization using chitosan-RAFT agent. Carbohydr. Polym. 73, 98104 (2008).
  107. Jiang, J., Hua, D. & Tang, J. One-pot synthesis of pH- and thermo-sensitive chitosan-based nanoparticles by the polymerization of acrylic acid/chitosan with macro-RAFT agent. Int. J. Biol. Macromol. 46, 126130 (2010).
  108. Kuilin, D. et al. A dithiocarbonate group-assisted graft copolymerization of methyl acrylate onto chitosan. Chem. J. Internet 9, 19 (2007).
  109. Bernard, J., Save, M., Arathoon, B. & Charleux, B. Preparation of a xanthate-terminated dextran by click chemistry: Application to the synthesis of polysaccharide-coated nanoparticles via surfactant-free ab initio emulsion polymerization of vinyl acetate. J. Polym. Sci. A 46, 28452857 (2008).
  110. Morimoto, N., Qiu, X.-P., Winnik, F. M. & Akiyoshi, K. Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41, 59855987 (2008).
  111. Chen, J., Yi, J., Sun, P., Liu, Z.-T. & Liu, Z.-W. Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose 16, 11331145 (2009).

Download references

Author information

Affiliations

  1. Key Centre for Polymers & Colloids, School of Chemistry, the University of Sydney, Sydney, New South Wales 2006, Australia.

    • Mona Semsarilar &
    • Sébastien Perrier

Corresponding author

Correspondence to:

Author details

Additional data