Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantifying forces in cell biology

Abstract

Cells exert, sense, and respond to physical forces through an astounding diversity of mechanisms. Here we review recently developed tools to quantify the forces generated by cells. We first review technologies based on sensors of known or assumed mechanical properties, and discuss their applicability and limitations. We then proceed to draw an analogy between these human-made sensors and force sensing in the cell. As mechanics is increasingly revealed to play a fundamental role in cell function we envisage that tools to quantify physical forces may soon become widely applied in life-sciences laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force quantification techniques for cell biology.

Similar content being viewed by others

References

  1. Thompson, D. A. W. On Growth and Form 2nd edn (Cambridge Univ. Press, 1942).

    Google Scholar 

  2. Murray, C. D. The physiological principle of minimum work: II. Oxygen exchange in capillaries. Proc. Natl Acad. Sci. USA 12, 299–304 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolff, J. The Law of Bone Remodeling (Springer, 1986).

    Book  Google Scholar 

  4. Chambers, R. Microdissection studies. II. The cell aster: a reversible gelation phenomenon. J. Exp. Zool. 23, 483–505 (1917).

    Article  CAS  Google Scholar 

  5. Crick, F. H. C. & Hughes, A. F. W. The physical properties of cytoplasm. Exp. Cell. Res. 1, 37–80 (1950).

    Article  Google Scholar 

  6. Paluch, E. K. et al. Mechanotransduction: use the force(s). BMC Biol. 13, 47 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Bosveld, F. et al. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 336, 724–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Sunyer, R. et al. Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353, 1157–1161 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Miroshnikova, Y. A. et al. Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18, 1336–1345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Schwarz, U. S. & Gardel, M. L. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125, 3051–3060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sugimura, K., Lenne, P. F. & Graner, F. Measuring forces and stresses in situ in living tissues. Development 143, 186–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Campas, O. A toolbox to explore the mechanics of living embryonic tissues. Semin. Cell Dev. Biol. 55, 119–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Polio, S. R. et al. Topographical control of multiple cell adhesion molecules for traction force microscopy. Integr. Biol. (Camb.) 6, 357–365 (2014).

    Article  CAS  Google Scholar 

  23. Bergert, M. et al. Confocal reference free traction force microscopy. Nat. Commun. 7, 12814 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, S. J., Oak, Y., Groisman, A. & Danuser, G. Traction microscopy to identify force modulation in subresolution adhesions. Nat. Methods 12, 653–656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribeiro, A. J., Denisin, A. K., Wilson, R. E. & Pruitt, B. L. For whom the cells pull: hydrogel and micropost devices for measuring traction forces. Methods 94, 51–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Del Alamo, J. C. et al. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl Acad. Sci. USA 104, 13343–13348 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426 (2009).

    Article  CAS  Google Scholar 

  29. Ambrosi, D., Duperray, A., Peschetola, V. & Verdier, C. Traction patterns of tumor cells. J. Math. Biol. 58, 163–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Munoz, J. J. Non-regularised inverse finite element analysis for 3D traction force microscopy. Int. J. Numer. Anal. Model. 13, 763–781 (2016).

    Google Scholar 

  31. Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Brask, J. B., Singla-Buxarrais, G., Uroz, M., Vincent, R. & Trepat, X. Compressed sensing traction force microscopy. Acta Biomater. 26, 286–294 (2015).

    Article  PubMed  Google Scholar 

  33. Colin-York, H. et al. Super-resolved traction force microscopy (STFM). Nano Lett. 16, 2633–2638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bastounis, E. et al. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. J. Cell Biol. 204, 1045–1061 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hur, S. S., Zhao, Y., Li, Y. S., Botvinick, E. & Chien, S. Live cells exert 3-dimensional traction forces on their substrata. Cell Mol. Bioeng. 2, 425–436 (2009).

    Article  PubMed  Google Scholar 

  36. Toyjanova, J. et al. High resolution, large deformation 3D traction force microscopy. PLoS ONE 9, e90976 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maskarinec, S. A., Franck, C., Tirrell, D. A. & Ravichandran, G. Quantifying cellular traction forces in three dimensions. Proc. Natl Acad. Sci. USA 106, 22108–22113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Legant, W. R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7, 969–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinwachs, J. et al. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13, 171–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Martiel, J. L. et al. Measurement of cell traction forces with ImageJ. Methods Cell Biol. 125, 269–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Style, R. W. et al. Traction force microscopy in physics and biology. Soft Matter 10, 4047–4055 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Schwarz, U. S. & Soine, J. R. Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim. Biophys. Acta 1853, 3095–3104 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  44. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gupta, M. et al. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 6, 7525 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Ghassemi, S. et al. Cells test substrate rigidity by local contractions on sub-micrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328–5333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wolfenson, H. et al. Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat. Cell Biol. 18, 33–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Moore, S. W., Biais, N. & Sheetz, M. P. Traction on immobilized netrin-1 is sufficient to reorient axons. Science 325, 166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biais, N., Higashi, D., So, M. & Ladoux, B. Techniques to measure pilus retraction forces. Methods Mol. Biol. 799, 197–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P. & Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104, 8281–8286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, S., Hong, J. & Lee, J. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient. Soft Matter 12, 2325–2333 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. le Digabel, J. et al. Magnetic micropillars as a tool to govern substrate deformations. Lab Chip 11, 2630–2636 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sniadecki, N. J. et al. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl Acad. Sci. USA 104, 14553–14558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghibaudo, M. et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836–1843 (2008).

    Article  CAS  Google Scholar 

  56. Taubenberger, A. V., Hutmacher, D. W. & Muller, D. J. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. Tissue Eng. Part B Rev. 20, 40–55 (2014).

    Article  PubMed  Google Scholar 

  57. Bufi, N., Durand-Smet, P. & Asnacios, A. Single-cell mechanics: the parallel plates technique. Methods Cell Biol. 125, 187–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Harris, A. R. et al. Characterizing the mechanics of cultured cell monolayers. Proc. Natl Acad. Sci. USA 109, 16449–16454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rajagopalan, J. & Saif, M. T. MEMS sensors and microsystems for cell mechanobiology. J. Micromech. Microeng. 21, 54002–54012 (2011).

    Article  PubMed  Google Scholar 

  60. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jurchenko, C. & Salaita, K. S. Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell Biol. 35, 2570–2582 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275, 3072–3087 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Iwai, S. & Uyeda, T. Q. Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor. Proc. Natl Acad. Sci. USA 105, 16882–16887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Borghi, N. et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proc. Natl Acad. Sci. USA 109, 12568–12573 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23, 1024–1030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985–3989 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Y., Ge, C., Zhu, C. & Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun. 5, 5167 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Blakely, B. L. et al. A DNA-based molecular probe for optically reporting cellular traction forces. Nat. Methods 11, 1229–1232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chang, A. C. et al. Single molecule force measurements in living cells reveal a minimally tensioned integrin state. ACS Nano 10, 10745–10752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991–994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rahil, Z. et al. Nanoscale mechanics guides cellular decision making. Integr. Biol. 8, 929–935 (2016).

    Article  CAS  Google Scholar 

  78. Galior, K., Liu, Y., Yehl, K., Vivek, S. & Salaita, K. Titin-based nanoparticle tension sensors map high-magnitude integrin forces within focal adhesions. Nano Lett. 16, 341–348 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Z. et al. Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl Acad. Sci. USA 107, 9944–9949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maruthamuthu, V., Sabass, B., Schwarz, U. S. & Gardel, M. L. Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc. Natl Acad. Sci. USA 108, 4708–4713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ng, M. R., Besser, A., Brugge, J. S. & Danuser, G. Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. eLife 3, e03282 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lamason, R. L. et al. Rickettsia Sca4 reduces vinculin-mediated intercellular tension to promote spread. Cell 167, 670–683.e10 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat. Cell Biol. 17, 276–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Trepat, X. & Fredberg, J. J. Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol. 21, 638–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tambe, D. T. et al. Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS ONE 8, e55172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zimmermann, J. et al. Intercellular stress reconstitution from traction force data. Biophys. J. 107, 548–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nier, V. et al. Inference of internal stress in a cell monolayer. Biophys. J. 110, 1625–1635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Serra-Picamal, X., Conte, V., Sunyer, R., Muñoz, J. J. & Trepat, X. in Biophysical Methods in Cell Biology Vol. 125. (ed. Paluch, E. K.) 309–330 (Academic Press, 2015).

    Book  Google Scholar 

  91. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nat. Phys. 8, 628–634 (2012).

    Article  CAS  Google Scholar 

  92. Soine, J. R. et al. Model-based traction force microscopy reveals differential tension in cellular actin bundles. PLoS Comput. Biol. 11, e1004076 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Colombelli, J. et al. Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J. Cell Sci. 122, 1665–1679 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Grill, S. W., Gonczy, P., Stelzer, E. H. K. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fernandez-Gonzalez, R., Simoes, S. d. M., Röper, J.-C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kasza, K. E., Farrell, D. L. & Zallen, J. A. Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. Proc. Natl Acad. Sci. USA 111, 11732–11737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Landsberg, K. P. et al. Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr. Biol. 19, 1950–1955 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. LeGoff, L., Rouault, H. & Lecuit, T. A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila. Development 140, 4051–4059 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P.-F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Porazinski, S. et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521, 217–221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Campinho, P. et al. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15, 1405–1414 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Davis, J. R. et al. Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 161, 361–373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Samarage, C. R. et al. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34, 435–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Bonnet, I. et al. Mechanical state, material properties and continuous description of an epithelial tissue. J. R. Soc. Interface 9, 2614–2623 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Hutson, M. S. et al. Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics. Biophys. J. 97, 3075–3085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brodland, G. W. et al. CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. PLoS ONE 9, e99116 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chiou, K. K., Hufnagel, L. & Shraiman, B. I. Mechanical stress inference for two dimensional cell arrays. PLoS Comput. Biol. 8, e1002512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guirao, B. et al. Unified quantitative characterization of epithelial tissue development. eLife 4, e08519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ishihara, S. & Sugimura, K. Bayesian inference of force dynamics during morphogenesis. J. Theor. Biol. 313, 201–211 (2012).

    Article  PubMed  Google Scholar 

  116. Sugimura, K. & Ishihara, S. The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing. Development 140, 4091–4101 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Veldhuis, J. H. et al. Inferring cellular forces from image stacks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Etournay, R. et al. TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. eLife 5, e14334 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Maitre, J. L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Brodland, G. W. et al. Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. Proc. Natl Acad. Sci. USA 107, 22111–22116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mayer, M., Depken, M., Bois, J. S., Julicher, F. & Grill, S. W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Roca-Cusachs, P., Iskratsch, T. & Sheetz, M. P. Finding the weakest link—exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025–3038 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Alam, S., Lovett, D. B., Dickinson, R. B., Roux, K. J. & Lele, T. P. Nuclear forces and cell mechanosensing. Prog. Mol. Biol. Transl. Sci. 126, 205–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Han, M. K. & de Rooij, J. Converging and unique mechanisms of mechanotransduction at adhesion sites. Trends Cell Biol. 26, 612–623 (2016).

    Article  PubMed  Google Scholar 

  126. Chen, Y., Lee, H., Tong, H., Schwartz, M. & Zhu, C. Force regulated conformational change of integrin αVβ3. Matrix Biol. 60–61, 70–85 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Ehrlicher, A. J., Nakamura, F., Hartwig, J. H., Weitz, D. A. & Stossel, T. P. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478, 260–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, J., Goyal, R. & Grandl, J. Localized force application reveals mechanically sensitive domains of Piezo1. Nat. Commun. 7, 12939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Yao, M. et al. Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5, 4525 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Rivas-Pardo, J. A. et al. Work done by titin protein folding assists muscle contraction. Cell Rep. 14, 1339–1347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kinoshita, K., Leung, A., Simon, S. & Evans, E. Long-lived, high-strength states of ICAM-1 bonds to β2 integrin, II: lifetimes of LFA-1 bonds under force in leukocyte signaling. Biophys. J. 98, 1467–1475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ju, L., Chen, Y., Xue, L., Du, X. & Zhu, C. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. eLife 5, e15447 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Margadant, F. et al. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9, e1001223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA 106, 18267–18272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kubow, K. E. et al. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6, 8026 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Krieger, C. C. et al. Cysteine shotgun-mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells. Proc. Natl Acad. Sci. USA 108, 8269–8274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lewis, A. H. & Grandl, J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife 4, e12088 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105, 6626–6631 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Case, L. B. et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17, 880–892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Roca-Cusachs, P., Gauthier, N. C., del Rio, A. & Sheetz, M. P. Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction. Proc. Natl Acad. Sci. USA 106, 16245–16250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jiang, G. Y., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mitrossilis, D. et al. Single-cell response to stiffness exhibits muscle-like behavior. Proc. Natl Acad. Sci. USA 106, 18243–18248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Veldhuis, J. H., Mashburn, D., Hutson, M. S. & Brodland, G. W. Practical aspects of the cellular force inference toolkit (CellFIT). Methods Cell Biol. 125, 331–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the many colleagues whose work could not be cited owing to space constraints. We thank M. Arroyo, J. C. del Álamo, J. J. Muñoz, G. W. Brodland, and all members of our laboratories for critical comments and encouragement. The authors acknowledge support from the Spanish Ministry of Economy, Industry and Competitiveness through the Centro de Excelencia Severo Ochoa Award to the Institute of Bioengineering of Catalonia, and through grants BFU2015-65074-P to X.T., BFU2014-52586-REDT and BFU2016-79916-P to P.R.-C., and BFU2016-75101-P and RYC-2014-15559 to V.C. The authors also acknowledge support from the Generalitat de Catalunya (Cerca Program and 2014-SGR-927 to X.T.), the European Research Council (CoG-616480 to X.T.), the European Commission (project 731957 to P.R.-C. and X.T.) and Fundació la Marató de TV3 (project 20133330 to P.R.-C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pere Roca-Cusachs, Vito Conte or Xavier Trepat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat Cell Biol 19, 742–751 (2017). https://doi.org/10.1038/ncb3564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing