Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of single-protein elasticity in mechanobiology

Abstract

In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. However, the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are not well understood in comparison. With the advent, development and refining of single-molecule nanomechanical techniques that enable the conformational dynamics of individual proteins under the effect of a calibrated force to be probed, we have begun to acquire a comprehensive knowledge of the diverse physicochemical principles that regulate the elasticity of single proteins. Here, we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of this prolific and burgeoning field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-molecule force spectroscopy techniques used to map the (un)folding energy landscape of a protein under force.
Fig. 2: Nanomechanical regulation of the cell matrix and the focal adhesion hub.
Fig. 3: Mechanical force regulates the nature of interactions within the cytoskeleton and between cells.
Fig. 4: Muscle nanomechanics.
Fig. 5: Integrating single-molecule experiments into cells.

Similar content being viewed by others

References

  1. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Article  CAS  Google Scholar 

  2. Dumortier, J. G. et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365, 465–468 (2019).

    Article  CAS  Google Scholar 

  3. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  4. Swift, J. & Discher, D. E. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 127, 3005–3015 (2014).

    CAS  Google Scholar 

  5. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  Google Scholar 

  6. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  7. Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    Article  CAS  Google Scholar 

  8. Kirby, T. J. & Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20, 373–381 (2018).

    Article  CAS  Google Scholar 

  9. Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e22 (2020).

    Article  CAS  Google Scholar 

  10. Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    Article  CAS  Google Scholar 

  11. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009).

    Article  CAS  Google Scholar 

  12. Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2017).

    Article  CAS  Google Scholar 

  13. Mohammadi, H. & Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    Article  CAS  Google Scholar 

  14. Dufrene, Y. F. & Persat, A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 18, 227–240 (2020).

    Article  CAS  Google Scholar 

  15. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    Article  CAS  Google Scholar 

  16. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Article  CAS  Google Scholar 

  17. Hu, X., Margadant, F. M., Yao, M. & Sheetz, M. P. Molecular stretching modulates mechanosensing pathways. Protein Sci. 26, 1337–1351 (2017).

    Article  CAS  Google Scholar 

  18. Stirnemann, G., Giganti, D., Fernandez, J. M. & Berne, B. J. Elasticity, structure, and relaxation of extended proteins under force. Proc. Natl Acad. Sci. USA 110, 3847–3852 (2013).

    Article  CAS  Google Scholar 

  19. Cecconi, C., Shank, E. A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    Article  CAS  Google Scholar 

  20. Shank, E. A., Cecconi, C., Dill, J. W., Marqusee, S. & Bustamante, C. The folding cooperativity of a protein is controlled by its chain topology. Nature 465, 637–640 (2010).

    Article  CAS  Google Scholar 

  21. Fernandez, J. M. & Li, H. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    Article  CAS  Google Scholar 

  22. Neupane, K. et al. Direct observation of transition paths during the folding of proteins and nucleic acids. Science 352, 239–242 (2016).

    Article  CAS  Google Scholar 

  23. Yu, H., Siewny, M. G., Edwards, D. T., Sanders, A. W. & Perkins, T. T. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355, 945–950 (2017).

    Article  CAS  Google Scholar 

  24. Choi, H. K. et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science 366, 1150–1156 (2019).

    Article  CAS  Google Scholar 

  25. Petrosyan, R., Narayan, A. & Woodside, M. T. Single-molecule force spectroscopy of protein folding. J. Mol. Biol. 433, 167207 (2021).

    Article  CAS  Google Scholar 

  26. Bustamante, C., Alexander, L., Maciuba, K. & Kaiser, C. M. Single-molecule studies of protein folding with optical tweezers. Annu. Rev. Biochem. 89, 443–470 (2020).

    Article  CAS  Google Scholar 

  27. Schonfelder, J., Alonso-Caballero, A., De Sancho, D. & Perez-Jimenez, R. The life of proteins under mechanical force. Chem. Soc. Rev. 47, 3558–3573 (2018).

    Article  CAS  Google Scholar 

  28. Sharma, S., Subramani, S. & Popa, I. Does protein unfolding play a functional role in vivo? FEBS J. 288, 1742–1758 (2021).

    Article  CAS  Google Scholar 

  29. Garcia-Manyes, S. & Beedle, A. E. M. Steering chemical reactions with force. Nat. Rev. Chem. 1, s41570-017-0083 (2017).

    Article  Google Scholar 

  30. Veigel, C. & Schmidt, C. F. Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12, 163–176 (2011).

    Article  CAS  Google Scholar 

  31. Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2018).

    Article  Google Scholar 

  32. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  Google Scholar 

  33. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article  CAS  Google Scholar 

  34. Yang, B., Liu, Z., Liu, H. & Nash, M. A. Next generation methods for single-molecule force spectroscopy on polyproteins and receptor–ligand complexes. Front. Mol. Biosci. 7, 85 (2020).

    Article  CAS  Google Scholar 

  35. Milles, L. F., Schulten, K., Gaub, H. E. & Bernardi, R. C. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 359, 1527–1533 (2018).

    Article  CAS  Google Scholar 

  36. Milles, L. F. & Gaub, H. E. Extreme mechanical stability in protein complexes. Curr. Opin. Struct. Biol. 60, 124–130 (2020).

    Article  CAS  Google Scholar 

  37. Schoeler, C. et al. Ultrastable cellulosome–adhesion complex tightens under load. Nat. Commun. 5, 5635 (2014).

    Article  CAS  Google Scholar 

  38. Liu, Z. et al. High force catch bond mechanism of bacterial adhesion in the human gut. Nat. Commun. 11, 4321 (2020).

    Article  CAS  Google Scholar 

  39. Herman-Bausier, P. & Dufrene, Y. F. Force matters in hospital-acquired infections. Science 359, 1464–1465 (2018).

    Article  CAS  Google Scholar 

  40. Mathelie-Guinlet, M. et al. Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen. Nat. Commun. 11, 5431 (2020).

    Article  Google Scholar 

  41. Viela, F., Speziale, P., Pietrocola, G. & Dufrene, Y. F. Mechanostability of the fibrinogen bridge between staphylococcal surface protein ClfA and endothelial cell integrin αVβ3. Nano Lett. 19, 7400–7410 (2019).

    Article  CAS  Google Scholar 

  42. Bustamante, C. J., Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Primers 1, 25 (2021).

    Article  CAS  Google Scholar 

  43. Edwards, D. T. et al. Optimizing 1-μs-resolution single-molecule force spectroscopy on a commercial atomic force microscope. Nano Lett. 15, 7091–7098 (2015).

    Article  CAS  Google Scholar 

  44. Cecconi, C., Shank, E. A., Marqusee, S. & Bustamante, C. DNA molecular handles for single-molecule protein-folding studies by optical tweezers. Methods Mol. Biol. 749, 255–271 (2011).

    Article  CAS  Google Scholar 

  45. Mora, M., Stannard, A. & Garcia-Manyes, S. The nanomechanics of individual proteins. Chem. Soc. Rev. 49, 6816–6832 (2020).

    Article  CAS  Google Scholar 

  46. Lof, A. et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc. Natl Acad. Sci. USA 116, 18798–18807 (2019).

    Article  Google Scholar 

  47. Lu, H. & Schulten, K. The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys. J. 79, 51–65 (2000).

    Article  CAS  Google Scholar 

  48. Franz, F., Daday, C. & Grater, F. Advances in molecular simulations of protein mechanical properties and function. Curr. Opin. Struct. Biol. 61, 132–138 (2020).

    Article  CAS  Google Scholar 

  49. Berkovich, R., Garcia-Manyes, S., Urbakh, M., Klafter, J. & Fernandez, J. M. Collapse dynamics of single proteins extended by force. Biophys. J. 98, 2692–2701 (2010).

    Article  CAS  Google Scholar 

  50. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  CAS  Google Scholar 

  51. Bosco, A., Camunas-Soler, J. & Ritort, F. Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Res. 42, 2064–2074 (2014).

    Article  CAS  Google Scholar 

  52. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    Article  Google Scholar 

  53. Stannard, A. et al. Molecular fluctuations as a ruler of force-induced protein conformations. Nano Lett. 21, 2953–2961 (2021).

    Article  CAS  Google Scholar 

  54. Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Marszalek, P. E. & Fernandez, J. M. Point mutations alter the mechanical stability of immunoglobulin modules. Nat. Struct. Biol. 7, 1117–1120 (2000).

    Article  CAS  Google Scholar 

  55. Carrion-Vazquez, M. et al. The mechanical stability of ubiquitin is linkage dependent. Nat. Struct. Biol. 10, 738–743 (2003).

    Article  CAS  Google Scholar 

  56. Brockwell, D. J. et al. Pulling geometry defines the mechanical resistance of a β-sheet protein. Nat. Struct. Biol. 10, 731–737 (2003).

    Article  CAS  Google Scholar 

  57. Carl, P., Kwok, C. H., Manderson, G., Speicher, D. W. & Discher, D. E. Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proc. Natl Acad. Sci. USA 98, 1565–1570 (2001).

    Article  CAS  Google Scholar 

  58. Wiita, A. P., Ainavarapu, S. R., Huang, H. H. & Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl Acad. Sci. USA 103, 7222–7227 (2006).

    Article  CAS  Google Scholar 

  59. Alegre-Cebollada, J., Badilla, C. L. & Fernandez, J. M. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J. Biol. Chem. 285, 11235–11242 (2010).

    Article  CAS  Google Scholar 

  60. Beedle, A. E. M., Mora, M., Lynham, S., Stirnemann, G. & Garcia-Manyes, S. Tailoring protein nanomechanics with chemical reactivity. Nat. Commun. 8, 15658 (2017).

    Article  CAS  Google Scholar 

  61. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  Google Scholar 

  62. Ainavarapu, S. R. et al. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys. J. 92, 225–233 (2007).

    Article  CAS  Google Scholar 

  63. Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).

    Article  CAS  Google Scholar 

  64. Wright, C. F., Teichmann, S. A., Clarke, J. & Dobson, C. M. The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438, 878–881 (2005).

    Article  CAS  Google Scholar 

  65. Han, J. H., Batey, S., Nickson, A. A., Teichmann, S. A. & Clarke, J. The folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 8, 319–330 (2007).

    Article  CAS  Google Scholar 

  66. Oberhauser, A. F., Marszalek, P. E., Carrion-Vazquez, M. & Fernandez, J. M. Single protein misfolding events captured by atomic force microscopy. Nat. Struct. Biol. 6, 1025–1028 (1999).

    Article  CAS  Google Scholar 

  67. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    Article  CAS  Google Scholar 

  68. Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M. & Fernandez, J. M. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002).

    Article  CAS  Google Scholar 

  69. Rief, M., Gautel, M., Schemmel, A. & Gaub, H. E. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys. J. 75, 3008–3014 (1998).

    Article  CAS  Google Scholar 

  70. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  71. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  72. Ott, W. et al. Elastin-like polypeptide linkers for single-molecule force spectroscopy. ACS Nano 11, 6346–6354 (2017).

    Article  CAS  Google Scholar 

  73. Craig, D., Krammer, A., Schulten, K. & Vogel, V. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc. Natl Acad. Sci. USA 98, 5590–5595 (2001).

    Article  CAS  Google Scholar 

  74. Peng, Q. et al. Mechanical design of the third FnIII domain of tenascin-C. J. Mol. Biol. 386, 1327–1342 (2009).

    Article  CAS  Google Scholar 

  75. Zhuang, S., Peng, Q., Cao, Y. & Li, H. Modulating the mechanical stability of extracellular matrix protein tenascin-C in a controlled and reversible fashion. J. Mol. Biol. 390, 820–829 (2009).

    Article  CAS  Google Scholar 

  76. Ng, S. P. et al. Designing an extracellular matrix protein with enhanced mechanical stability. Proc. Natl Acad. Sci. USA 104, 9633–9637 (2007).

    Article  CAS  Google Scholar 

  77. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  Google Scholar 

  78. Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60-61, 27–37 (2017).

    Article  CAS  Google Scholar 

  79. Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80, 353–387 (2018).

    Article  CAS  Google Scholar 

  80. Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA 106, 18267–18272 (2009).

    Article  CAS  Google Scholar 

  81. Gao, M. et al. Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proc. Natl Acad. Sci. USA 100, 14784–14789 (2003).

    Article  CAS  Google Scholar 

  82. Li, H., Kong, N., Laver, B. & Liu, J. Hydrogels constructed from engineered proteins. Small 12, 973–987 (2016).

    Article  Google Scholar 

  83. Li, H. There is plenty of room in the folded globular proteins: tandem modular elastomeric proteins offer new opportunities in engineering protein-based biomaterials. Adv. NanoBiomed Res. 1, 2100028 (2021).

    Article  Google Scholar 

  84. Arnoldini, S. et al. Novel peptide probes to assess the tensional state of fibronectin fibers in cancer. Nat. Commun. 8, 1793 (2017).

    Article  Google Scholar 

  85. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010).

    Article  CAS  Google Scholar 

  86. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science 323, 642–644 (2009).

    Article  CAS  Google Scholar 

  87. Min, D., Jefferson, R. E., Bowie, J. U. & Yoon, T. Y. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat. Chem. Biol. 11, 981–987 (2015).

    Article  CAS  Google Scholar 

  88. Zocher, M. et al. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano 6, 961–971 (2012).

    Article  CAS  Google Scholar 

  89. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  90. Elosegui-Artola, A., Trepat, X. & Roca-Cusachs, P. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol. 28, 356–367 (2018).

    Article  CAS  Google Scholar 

  91. Goult, B. T., Brown, N. H. & Schwartz, M. A. Talin in mechanotransduction and mechanomemory at a glance. J. Cell Sci. 134, 258749 (2021).

    Article  Google Scholar 

  92. Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

    Article  CAS  Google Scholar 

  93. Haining, A. W., von Essen, M., Attwood, S. J., Hytonen, V. P. & Del Rio Hernandez, A. All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing. ACS Nano 10, 6648–6658 (2016).

    Article  CAS  Google Scholar 

  94. Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Article  Google Scholar 

  95. Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

    Article  Google Scholar 

  96. Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Talin folding as the tuning fork of cellular mechanotransduction. Proc. Natl Acad. Sci. USA 117, 21346–21353 (2020).

    Article  CAS  Google Scholar 

  97. Gingras, A. R. et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280, 37217–37224 (2005).

    Article  CAS  Google Scholar 

  98. Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. Sci. Adv. 6, eaaz4707 (2020).

    Article  CAS  Google Scholar 

  99. Wang, Y. et al. Force-dependent interactions between talin and full-length vinculin. J. Am. Chem. Soc. 143, 14726–14737 (2021).

    Article  CAS  Google Scholar 

  100. Zacharchenko, T. et al. LD motif recognition by talin: structure of the talin-DLC1 complex. Structure 24, 1130–1141 (2016).

    Article  CAS  Google Scholar 

  101. Li, G. et al. Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK). Proc. Natl Acad. Sci. USA 108, 17129–17134 (2011).

    Article  CAS  Google Scholar 

  102. Haining, A. W. M. et al. Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biol. 16, e2005599 (2018).

    Article  Google Scholar 

  103. Gough, R. E. et al. Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1. J. Biol. Chem. 297, 100837 (2021).

    Article  CAS  Google Scholar 

  104. Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005).

    Article  CAS  Google Scholar 

  105. Seong, J. et al. Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proc. Natl Acad. Sci. USA 110, 19372–19377 (2013).

    Article  CAS  Google Scholar 

  106. Bell, S. & Terentjev, E. M. Focal adhesion kinase: the reversible molecular mechanosensor. Biophys. J. 112, 2439–2450 (2017).

    Article  CAS  Google Scholar 

  107. Bauer, M. S. et al. Structural and mechanistic insights into mechanoactivation of focal adhesion kinase. Proc. Natl Acad. Sci. USA 116, 6766–6774 (2019).

    Article  CAS  Google Scholar 

  108. Vera, A. M. & Carrion-Vazquez, M. Direct identification of protein–protein interactions by single-molecule force spectroscopy. Angew. Chem. Int. Ed. 55, 13970–13973 (2016).

    Article  CAS  Google Scholar 

  109. Kim, J., Zhang, C. Z., Zhang, X. & Springer, T. A. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466, 992–995 (2010).

    Article  CAS  Google Scholar 

  110. Le, S., Yu, M. & Yan, J. Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin–talin/α-catenin linkages. Sci. Adv. 5, eaav2720 (2019).

    Article  CAS  Google Scholar 

  111. Chen, N. P., Sun, Z. & Fassler, R. The Kank family proteins in adhesion dynamics. Curr. Opin. Cell Biol. 54, 130–136 (2018).

    Article  CAS  Google Scholar 

  112. Sun, Z. et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation. Nat. Cell Biol. 18, 941–953 (2016).

    Article  CAS  Google Scholar 

  113. Yu, M. et al. Force-dependent regulation of talin–KANK1 complex at focal adhesions. Nano Lett. 19, 5982–5990 (2019).

    Article  CAS  Google Scholar 

  114. Ladoux, B., Nelson, W. J., Yan, J. & Mege, R. M. The mechanotransduction machinery at work at adherens junctions. Integr. Biol. 7, 1109–1119 (2015).

    Article  CAS  Google Scholar 

  115. Hoffman, B. D. & Yap, A. S. Towards a dynamic understanding of cadherin-based mechanobiology. Trends Cell Biol. 25, 803–814 (2015).

    Article  CAS  Google Scholar 

  116. Leckband, D. E. & de Rooij, J. Cadherin adhesion and mechanotransduction. Annu. Rev. Cell Dev. Biol. 30, 291–315 (2014).

    Article  CAS  Google Scholar 

  117. Niessen, C. M., Leckband, D. & Yap, A. S. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol. Rev. 91, 691–731 (2011).

    Article  CAS  Google Scholar 

  118. Shapiro, L. & Weis, W. I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol. 1, a003053 (2009).

    Article  Google Scholar 

  119. Harrison, O. J. et al. Two-step adhesive binding by classical cadherins. Nat. Struct. Mol. Biol. 17, 348–357 (2010).

    Article  CAS  Google Scholar 

  120. Boggon, T. J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002).

    Article  CAS  Google Scholar 

  121. Rakshit, S., Zhang, Y., Manibog, K., Shafraz, O. & Sivasankar, S. Ideal, catch, and slip bonds in cadherin adhesion. Proc. Natl Acad. Sci. USA 109, 18815–18820 (2012).

    Article  CAS  Google Scholar 

  122. Manibog, K. et al. Molecular determinants of cadherin ideal bond formation: conformation-dependent unbinding on a multidimensional landscape. Proc. Natl Acad. Sci. USA 113, E5711–E5720 (2016).

    Article  CAS  Google Scholar 

  123. Huber, A. H. & Weis, W. I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001).

    Article  CAS  Google Scholar 

  124. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell 123, 889–901 (2005).

    Article  CAS  Google Scholar 

  125. Borghi, N. et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proc. Natl Acad. Sci. USA 109, 12568–12573 (2012).

    Article  CAS  Google Scholar 

  126. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    Article  CAS  Google Scholar 

  127. Buckley, C. D. et al. Cell adhesion. The minimal cadherin–catenin complex binds to actin filaments under force. Science 346, 1254211 (2014).

    Article  Google Scholar 

  128. Le, S., Yu, M. & Yan, J. Phosphorylation reduces the mechanical stability of the α-catenin/β-catenin complex. Angew. Chem. Int. Ed. 58, 18663–18669 (2019).

    Article  CAS  Google Scholar 

  129. Valbuena, A., Vera, A. M., Oroz, J., Menendez, M. & Carrion-Vazquez, M. Mechanical properties of β-catenin revealed by single-molecule experiments. Biophys. J. 103, 1744–1752 (2012).

    Article  CAS  Google Scholar 

  130. Pang, S. M., Le, S., Kwiatkowski, A. V. & Yan, J. Mechanical stability of αT-catenin and its activation by force for vinculin binding. Mol. Biol. Cell 30, 1930–1937 (2019).

    Article  CAS  Google Scholar 

  131. Yao, M. et al. Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat. Commun. 5, 4525 (2014).

    Article  CAS  Google Scholar 

  132. Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).

    Article  CAS  Google Scholar 

  133. Nakamura, F., Stossel, T. P. & Hartwig, J. H. The filamins: organizers of cell structure and function. Cell Adh. Migr. 5, 160–169 (2011).

    Article  Google Scholar 

  134. Nakamura, F., Osborn, T. M., Hartemink, C. A., Hartwig, J. H. & Stossel, T. P. Structural basis of filamin A functions. J. Cell Biol. 179, 1011–1025 (2007).

    Article  CAS  Google Scholar 

  135. Furuike, S., Ito, T. & Yamazaki, M. Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett. 498, 72–75 (2001).

    Article  CAS  Google Scholar 

  136. Schwaiger, I., Kardinal, A., Schleicher, M., Noegel, A. A. & Rief, M. A mechanical unfolding intermediate in an actin-crosslinking protein. Nat. Struct. Mol. Biol. 11, 81–85 (2004).

    Article  CAS  Google Scholar 

  137. Xu, T., Lannon, H., Wolf, S., Nakamura, F. & Brujic, J. Domain–domain interactions in filamin A (16–23) impose a hierarchy of unfolding forces. Biophys. J. 104, 2022–2030 (2013).

    Article  CAS  Google Scholar 

  138. Chen, H. et al. Differential mechanical stability of filamin A rod segments. Biophys. J. 101, 1231–1237 (2011).

    Article  CAS  Google Scholar 

  139. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  CAS  Google Scholar 

  140. Chen, H. et al. Mechanical perturbation of filamin A immunoglobulin repeats 20–21 reveals potential non-equilibrium mechanochemical partner binding function. Sci. Rep. 3, 1642 (2013).

    Article  Google Scholar 

  141. Rognoni, L., Most, T., Zoldak, G. & Rief, M. Force-dependent isomerization kinetics of a highly conserved proline switch modulates the mechanosensing region of filamin. Proc. Natl Acad. Sci. USA 111, 5568–5573 (2014).

    Article  CAS  Google Scholar 

  142. Sengupta, A., Rognoni, L. E., Merkel, U., Zoldak, G. & Rief, M. SlyD accelerates trans-to-cis prolyl isomerization in a mechanosignaling protein under load. J. Phys. Chem. B 125, 8712–8721 (2021).

    Article  CAS  Google Scholar 

  143. Rognoni, L., Stigler, J., Pelz, B., Ylanne, J. & Rief, M. Dynamic force sensing of filamin revealed in single-molecule experiments. Proc. Natl Acad. Sci. USA 109, 19679–19684 (2012).

    Article  CAS  Google Scholar 

  144. Blanchard, A., Ohanian, V. & Critchley, D. The structure and function of α-actinin. J. Muscle Res. Cell Motil. 10, 280–289 (1989).

    Article  CAS  Google Scholar 

  145. Le, S. et al. Mechanotransmission and mechanosensing of human alpha-actinin 1. Cell Rep. 21, 2714–2723 (2017).

    Article  CAS  Google Scholar 

  146. Ferrer, J. M. et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl Acad. Sci. USA 105, 9221–9226 (2008).

    Article  CAS  Google Scholar 

  147. Sun, H. Q., Yamamoto, M., Mejillano, M. & Yin, H. L. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274, 33179–33182 (1999).

    Article  CAS  Google Scholar 

  148. Robinson, R. C. et al. Domain movement in gelsolin: a calcium-activated switch. Science 286, 1939–1942 (1999).

    Article  CAS  Google Scholar 

  149. Lv, C. et al. Single-molecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin. Nat. Commun. 5, 4623 (2014).

    Article  CAS  Google Scholar 

  150. Le, S., Yu, M., Bershadsky, A. & Yan, J. Mechanical regulation of formin-dependent actin polymerization. Semin. Cell Dev. Biol. 102, 73–80 (2020).

    Article  CAS  Google Scholar 

  151. Otomo, T. et al. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433, 488–494 (2005).

    Article  CAS  Google Scholar 

  152. Vavylonis, D., Kovar, D. R., O’Shaughnessy, B. & Pollard, T. D. Model of formin-associated actin filament elongation. Mol. Cell 21, 455–466 (2006).

    Article  CAS  Google Scholar 

  153. Jegou, A., Carlier, M. F. & Romet-Lemonne, G. Formin mDia1 senses and generates mechanical forces on actin filaments. Nat. Commun. 4, 1883 (2013).

    Article  Google Scholar 

  154. Yu, M. et al. mDia1 senses both force and torque during F-actin filament polymerization. Nat. Commun. 8, 1650 (2017).

    Article  Google Scholar 

  155. Yu, M. et al. Effects of mechanical stimuli on profilin- and formin-mediated actin polymerization. Nano Lett. 18, 5239–5247 (2018).

    Article  CAS  Google Scholar 

  156. Gautel, M. & Djinovic-Carugo, K. The sarcomeric cytoskeleton: from molecules to motion. J. Exp. Biol. 219, 135–145 (2016).

    Article  Google Scholar 

  157. Wang, Z. et al. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 184, 2135–2150.e13 (2021).

    Article  CAS  Google Scholar 

  158. Szent-Gyorgyi, A. G. The early history of the biochemistry of muscle contraction. J. Gen. Physiol. 123, 631–641 (2004).

    Article  Google Scholar 

  159. Freundt, J. K. & Linke, W. A. Titin as a force-generating muscle protein under regulatory control. J. Appl. Physiol. 126, 1474–1482 (2019).

    Article  CAS  Google Scholar 

  160. Linke, W. A. & Granzier, H. A spring tale: new facts on titin elasticity. Biophys. J. 75, 2613–2614 (1998).

    Article  CAS  Google Scholar 

  161. Pinotsis, N. et al. Evidence for a dimeric assembly of two titin/telethonin complexes induced by the telethonin C-terminus. J. Struct. Biol. 155, 239–250 (2006).

    Article  CAS  Google Scholar 

  162. Garcia-Manyes, S., Badilla, C. L., Alegre-Cebollada, J., Javadi, Y. & Fernandez, J. M. Spontaneous dimerization of titin protein Z1Z2 domains induces strong nanomechanical anchoring. J. Biol. Chem. 287, 20240–20247 (2012).

    Article  CAS  Google Scholar 

  163. Bertz, M., Wilmanns, M. & Rief, M. The titin–telethonin complex is a directed, superstable molecular bond in the muscle Z-disk. Proc. Natl Acad. Sci. USA 106, 13307–133310 (2009).

    Article  CAS  Google Scholar 

  164. Li, H. & Fernandez, J. M. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy. J. Mol. Biol. 334, 75–86 (2003).

    Article  CAS  Google Scholar 

  165. Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002).

    Article  CAS  Google Scholar 

  166. Anderson, B. R., Bogomolovas, J., Labeit, S. & Granzier, H. Single molecule force spectroscopy on titin implicates immunoglobulin domain stability as a cardiac disease mechanism. J. Biol. Chem. 288, 5303–5315 (2013).

    Article  CAS  Google Scholar 

  167. Linke, W. A. et al. PEVK domain of titin: an entropic spring with actin-binding properties. J. Struct. Biol. 137, 194–205 (2002).

    Article  CAS  Google Scholar 

  168. Sarkar, A., Caamano, S. & Fernandez, J. M. The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy. J. Biol. Chem. 280, 6261–6264 (2005).

    Article  CAS  Google Scholar 

  169. Pang, S. M., Le, S. & Yan, J. Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol. Cell 110, 65–76 (2018).

    Article  CAS  Google Scholar 

  170. Rivas-Pardo, J. A. et al. Work done by titin protein folding assists muscle contraction. Cell Rep. 14, 1339–1347 (2016).

    Article  CAS  Google Scholar 

  171. Eckels, E. C., Haldar, S., Tapia-Rojo, R., Rivas-Pardo, J. A. & Fernandez, J. M. The mechanical power of titin folding. Cell Rep. 27, 1836–1847 e4 (2019).

    Article  CAS  Google Scholar 

  172. Yu, M., Lu, J. H., Le, S. & Yan, J. Unexpected low mechanical stability of titin I27 domain at physiologically relevant temperature. J. Phys. Chem. Lett. 12, 7914–7920 (2021).

    Article  CAS  Google Scholar 

  173. Yuan, G. et al. Elasticity of the transition state leading to an unexpected mechanical stabilization of titin immunoglobulin domains. Angew. Chem. Int. Ed. 56, 5490–5493 (2017).

    Article  CAS  Google Scholar 

  174. Alegre-Cebollada, J. et al. S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding. Cell 156, 1235–1246 (2014).

    Article  CAS  Google Scholar 

  175. Beedle, A. E., Lynham, S. & Garcia-Manyes, S. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding. Nat. Commun. 7, 12490 (2016).

    Article  CAS  Google Scholar 

  176. Giganti, D., Yan, K., Badilla, C. L., Fernandez, J. M. & Alegre-Cebollada, J. Disulfide isomerization reactions in titin immunoglobulin domains enable a mode of protein elasticity. Nat. Commun. 9, 185 (2018).

    Article  Google Scholar 

  177. Grutzner, A. et al. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys. J. 97, 825–834 (2009).

    Article  Google Scholar 

  178. Hidalgo, C. et al. PKC phosphorylation of titin’s PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Circ. Res. 105, 631–638 (2009).

    Article  CAS  Google Scholar 

  179. Kruger, M. et al. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ. Res. 104, 87–94 (2009).

    Article  Google Scholar 

  180. Perkin, J. et al. Phosphorylating titin’s cardiac N2B element by ERK2 or CaMKIIδ lowers the single molecule and cardiac muscle force. Biophys. J. 109, 2592–2601 (2015).

    Article  CAS  Google Scholar 

  181. Zhu, Y., Bogomolovas, J., Labeit, S. & Granzier, H. Single molecule force spectroscopy of the cardiac titin N2B element: effects of the molecular chaperone αB-crystallin with disease-causing mutations. J. Biol. Chem. 284, 13914–13923 (2009).

    Article  CAS  Google Scholar 

  182. Perales-Calvo, J., Giganti, D., Stirnemann, G. & Garcia-Manyes, S. The force-dependent mechanism of DnaK-mediated mechanical folding. Sci. Adv. 4, eaaq0243 (2018).

    Article  Google Scholar 

  183. Linke, W. A. & Kruger, M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology 25, 186–198 (2010).

    Article  CAS  Google Scholar 

  184. Puchner, E. M. et al. Mechanoenzymatics of titin kinase. Proc. Natl Acad. Sci. USA 105, 13385–13390 (2008).

    Article  CAS  Google Scholar 

  185. Grater, F., Shen, J., Jiang, H., Gautel, M. & Grubmuller, H. Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Biophys. J. 88, 790–804 (2005).

    Article  Google Scholar 

  186. Gautel, M. The sarcomeric cytoskeleton: who picks up the strain? Curr. Opin. Cell Biol. 23, 39–46 (2011).

    Article  CAS  Google Scholar 

  187. Grison, M., Merkel, U., Kostan, J., Djinovic-Carugo, K. & Rief, M. α-Actinin/titin interaction: a dynamic and mechanically stable cluster of bonds in the muscle Z-disk. Proc. Natl Acad. Sci. USA 114, 1015–1020 (2017).

    Article  CAS  Google Scholar 

  188. Pernigo, S. et al. Structural insight into M-band assembly and mechanics from the titin-obscurin-like-1 complex. Proc. Natl Acad. Sci. USA 107, 2908–2913 (2010).

    Article  CAS  Google Scholar 

  189. Berkemeier, F. et al. Fast-folding alpha-helices as reversible strain absorbers in the muscle protein myomesin. Proc. Natl Acad. Sci. USA 108, 14139–14144 (2011).

    Article  CAS  Google Scholar 

  190. Pinotsis, N. et al. Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties. PLoS Biol. 10, e1001261 (2012).

    Article  CAS  Google Scholar 

  191. Pernigo, S. et al. Binding of myomesin to obscurin-like-1 at the muscle M-band provides a strategy for isoform-specific mechanical protection. Structure 25, 107–120 (2017).

    Article  CAS  Google Scholar 

  192. Bera, M., Ainavarapu, S. R. & Sengupta, K. Significance of 1B and 2B domains in modulating elastic properties of lamin A. Sci. Rep. 6, 27879 (2016).

    Article  CAS  Google Scholar 

  193. Bera, M. et al. Characterization of unfolding mechanism of human lamin A Ig fold by single-molecule force spectroscopy-implications in EDMD. Biochemistry 53, 7247–7258 (2014).

    Article  CAS  Google Scholar 

  194. Goldman, D. H. et al. Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 348, 457–460 (2015).

    Article  CAS  Google Scholar 

  195. Aubin-Tam, M. E., Olivares, A. O., Sauer, R. T., Baker, T. A. & Lang, M. J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011).

    Article  CAS  Google Scholar 

  196. Sen, M. et al. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Cell 155, 636–646 (2013).

    Article  CAS  Google Scholar 

  197. Olivares, A. O., Baker, T. A. & Sauer, R. T. Mechanical protein unfolding and degradation. Annu. Rev. Physiol. 80, 413–429 (2018).

    Article  CAS  Google Scholar 

  198. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  199. Popa, I. et al. Nanomechanics of halotag tethers. J. Am. Chem. Soc. 135, 12762–12771 (2013).

    Article  CAS  Google Scholar 

  200. Dietz, H. & Rief, M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl Acad. Sci. USA 101, 16192–16197 (2004).

    Article  CAS  Google Scholar 

  201. Olivares, A. O., Kotamarthi, H. C., Stein, B. J., Sauer, R. T. & Baker, T. A. Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Proc. Natl Acad. Sci. USA 114, E6306–E6313 (2017).

    Article  CAS  Google Scholar 

  202. Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    Article  CAS  Google Scholar 

  203. Krieger, C. C. et al. Cysteine shotgun-mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells. Proc. Natl Acad. Sci. USA 108, 8269–8274 (2011).

    Article  CAS  Google Scholar 

  204. Gilbert, H. T. J. et al. Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading. Nat. Commun. 10, 4149 (2019).

    Article  Google Scholar 

  205. Saini, K. & Discher, D. E. Forced unfolding of proteins directs biochemical cascades. Biochemistry 58, 4893–4902 (2019).

    Article  CAS  Google Scholar 

  206. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  Google Scholar 

  207. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16, 376–381 (2014).

    Article  CAS  Google Scholar 

  208. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  Google Scholar 

  209. Spadaro, D. et al. Tension-dependent stretching activates ZO-1 to control the junctional localization of its interactors. Curr. Biol. 27, 3783–3795.e8 (2017).

    Article  CAS  Google Scholar 

  210. Rivas-Pardo, J. A. et al. A halotag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat. Commun. 11, 2060 (2020).

    Article  CAS  Google Scholar 

  211. Infante, E. et al. The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nat. Phys. 15, 973–981 (2019).

    Article  CAS  Google Scholar 

  212. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410.e14 (2017).

    Article  CAS  Google Scholar 

  213. Randles, L. G., Rounsevell, R. W. & Clarke, J. Spectrin domains lose cooperativity in forced unfolding. Biophys. J. 92, 571–577 (2007).

    Article  CAS  Google Scholar 

  214. Gayrard, C. & Borghi, N. FRET-based molecular tension microscopy. Methods 94, 33–42 (2016).

    Article  CAS  Google Scholar 

  215. Cost, A. L., Ringer, P., Chrostek-Grashoff, A. & Grashoff, C. How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell Mol. Bioeng. 8, 96–105 (2015).

    Article  CAS  Google Scholar 

  216. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  CAS  Google Scholar 

  217. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Article  CAS  Google Scholar 

  218. Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).

    Article  CAS  Google Scholar 

  219. Arsenovic, P. T. et al. Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110, 34–43 (2016).

    Article  CAS  Google Scholar 

  220. Berkovich, R., Fernandez, V. I., Stirnemann, G., Valle-Orero, J. & Fernandez, J. M. Segmentation and the entropic elasticity of modular proteins. J. Phys. Chem. Lett. 9, 4707–4713 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001002), the UK Medical Research Council (FC001002) and the Wellcome Trust (FC001002). A.E.M.B. is the recipient of a Sir Henry Wellcome fellowship (210887/Z/18/Z). This work was supported by the European Commission (Mechanocontrol, grant agreement 731957), an EPSRC Fellowship (K00641X/1), a BBSRC sLOLA (BB/V003518/1), a Leverhulme Trust Research Leadership Award (RL 2016-015), a Wellcome Trust Investigator Award (212218/Z/18/Z) and a Royal Society Wolfson Fellowship (RSWF/R3/183006) to S.G.-M.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sergi Garcia-Manyes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Yves Dufrene and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mechanosensing

A broad term encompassing the mechanisms by which cells can sense mechanical forces from the environment.

Mechanotransduction

The process by which cells convert a mechanical stimulus into a biochemical signal.

Persistence length

Measure of the protein stiffness. Characteristic length beyond which thermal forces randomize the direction of the protein polymer.

Domains

Functional or structural unit within a large protein.

Proline mutation

The insertion of a bulky proline amino acid into the mechanical clamp region of the protein is a method of disrupting the hydrogen bonds and lowering the force required to mechanically unfold a protein.

Catch bond

A bond whose lifetime increases when subjected to mechanical force.

Slip bond

A bond whose lifetime decreases when subjected to mechanical force.

Isoform

Member of a family of highly similar proteins encoded by the same gene or gene family. Some isoforms have the same function, whereas others have unique functions.

Conserved

Identical or similar sequences across species or genomes, which have been maintained through natural selection.

Sarcomere

Smallest functional unit of striated muscle tissue. Each is composed of protein filaments that slide past each other upon muscle contraction and relaxation.

Alternatively spliced

Process during gene expression that allows a single gene to code for multiple proteins.

Z- and M-lines

In a sarcomere, two Z-lines define its boundaries. The M-line runs down the centre of the sarcomere, through the middle of the myosin filaments.

Post-translational modifications

Chemical modifications, often in the amino acid side chains of a protein, that occur after translation. In the context of protein mechanics, post-translational modifications might affect the protein’s mechanical stability and its folding dynamics.

Chaperone

A protein whose function is to assist in the folding or unfolding process of another (client) protein.

SecM-stalled ribosomes

SecM is a bacterial protein that stalls while it is being made at the ribosome.

Translocation

Process by which a molecule (protein) threads through a narrow (biological) pore.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beedle, A.E.M., Garcia-Manyes, S. The role of single-protein elasticity in mechanobiology. Nat Rev Mater 8, 10–24 (2023). https://doi.org/10.1038/s41578-022-00488-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00488-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing