Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS

Abstract

Subcellular localization is emerging as an important mechanism for mTORC1 regulation. We report that the tuberous sclerosis complex (TSC) signalling node, TSC1, TSC2 and Rheb, localizes to peroxisomes, where it regulates mTORC1 in response to reactive oxygen species (ROS). TSC1 and TSC2 were bound by peroxisomal biogenesis factors 19 and 5 (PEX19 and PEX5), respectively, and peroxisome-localized TSC functioned as a Rheb GTPase-activating protein (GAP) to suppress mTORC1 and induce autophagy. Naturally occurring pathogenic mutations in TSC2 decreased PEX5 binding, and abrogated peroxisome localization, Rheb GAP activity and suppression of mTORC1 by ROS. Cells lacking peroxisomes were deficient in mTORC1 repression by ROS, and peroxisome-localization-deficient TSC2 mutants caused polarity defects and formation of multiple axons in neurons. These data identify a role for the TSC in responding to ROS at the peroxisome, and identify the peroxisome as a signalling organelle involved in regulation of mTORC1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TSC1 and TSC2 localization to peroxisomes.
Figure 2: Cell fractionation demonstrating the TSC signalling node at the peroxisome.
Figure 3: Active TSC signalling node resident at peroxisome membrane.
Figure 4: The TSC signalling node at the peroxisome induces autophagy in response to ROS.
Figure 5: The ability of TSC to suppress mTORC1 is abrogated in peroxisome-deficient Zellweger cells.
Figure 6: TSC1 and TSC2 interact with PEX19 and PEX5.
Figure 7: TSC2 functions at the peroxisome to repress mTORC1.

Similar content being viewed by others

References

  1. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. New Engl. J. Med. 355, 1345–1356 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Gomez, M. R., Sampson, J. R. & Whittemore, V. H. Tuberous Sclerosis Complex 3rd edn (Oxford Univ. Press, 1999).

    Google Scholar 

  3. Aspuria, P. J. & Tamanoi, F. The Rheb family of GTP-binding proteins. Cell Signal. 16, 1105–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, J. & Manning, B. D. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sengupta, S., Peterson, T. R. & Sabatini, D. M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 40, 310–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jewell, J. L., Russell, R. C. & Guan, K. L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 14, 133–139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flinn, R. J., Yan, Y., Goswami, S., Parker, P. J. & Backer, J. M. The late endosome is essential for mTORC1 signaling. Mol. Biol. Cell 21, 833–841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomalsurface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schrader, M. & Fahimi, H. D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta 1763, 1755–1766 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Wanders, R. J. & Waterham, H. R. Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75, 295–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, C., Agrawal, G. & Subramani, S. Peroxisome assembly: matrix and membrane protein biogenesis. J. Cell Biol. 193, 7–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dibble, C. C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai, S. L. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 173, 279–289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inoki, K. & Guan, K. L. Tuberous sclerosis complex, implication from a raregenetic disease to common cancer treatment. Hum. Mol. Genet. 18, R94–R100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plank, T. L., Yeung, R. S. & Henske, E. P. Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res. 58, 4766–4770 (1998).

    CAS  PubMed  Google Scholar 

  27. Chen, Y., Azad, M. B. & Gibson, S. B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16, 1040–1052 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749–1760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Duclos, S., Bride, J., Ramirez, L. C. & Bournot, P. Peroxisome proliferation and beta-oxidation in Fao and MH1C1 rat hepatoma cells, HepG2 human hepatoblastoma cells and cultured human hepatocytes: effect of ciprofibrate. Eur. J. Cell Biol. 72, 314–323 (1997).

    CAS  PubMed  Google Scholar 

  31. Scotto, C., Keller, J. M., Schohn, H. & Dauca, M. Comparative effects of clofibrate on peroxisomal enzymes of human (Hep EBNA2) and rat (FaO) hepatoma cell lines. Eur. J. Cell Biol. 66, 375–381 (1995).

    CAS  PubMed  Google Scholar 

  32. Weller, S., Gould, S. J. & Valle, D. Peroxisome biogenesis disorders. Annu. Rev. Genom. Hum. Genet. 4, 165–211 (2003).

    Article  CAS  Google Scholar 

  33. Harrington, L. S., Findlay, G. M. & Lamb, R. F. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem. Sci. 30, 35–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Schluter, A., Real-Chicharro, A., Gabaldon, T., Sanchez-Jimenez, F. & Pujol, A. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res. 38, D800–D805 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Freitas, M. O. et al. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J. Biol. Chem. 286, 40509–40519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stanley, W. A. & Wilmanns, M. Dynamic architecture of the peroxisomal import receptor Pex5p. Biochim. Biophys. Acta 1763, 1592–1598 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Van der Klei, I. J. & Veenhuis, M. PTS1-independent sorting of peroxisomal matrix proteins by Pex5p. Biochim. Biophys. Acta 1763, 1794–1800 (2006).

    Article  PubMed  Google Scholar 

  38. Yamamoto, Y., Jones, K. A., Mak, B. C., Muehlenbachs, A. & Yeung, R. S. Multicompartmental distribution of the tuberous sclerosis gene products, hamartin and tuberin. Arch. Biochem. Biophys. 404, 210–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Hodges, A. K. et al. Pathological mutations in TSC1 and TSC2 disrupt theinteraction between hamartin and tuberin. Hum. Mol. Genet. 10, 2899–2905 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Choi, Y. J. et al. Tuberous sclerosis complex proteins control axon formation. Genes Dev. 22, 2485–2495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coevoets, R. et al. A reliable cell-based assay for testing unclassified TSC2 gene variants. Eur. J. Hum. Genet. 17, 301–310 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Jones, A. C. et al. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet. 64, 1305–1315 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Szewczyk, E., Andrianopoulos, A., Davis, M. A. & Hynes, M. J. A single gene produces mitochondrial, cytoplasmic, and peroxisomal NADP-dependentisocitrate dehydrogenase in Aspergillus nidulans. J. Biol. Chem. 276, 37722–37729 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Tilbrook, K., Gnanasambandam, A., Schenk, P. M. & Brumbley, S. M. Efficient targeting of polyhydroxybutyrate biosynthetic enzymes to plant peroxisomes requires more than three amino acids in the carboxyl-terminal signal. J. Plant Physiol. 167, 329–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Klein, A. T., van den Berg, M., Bottger, G., Tabak, H. F. & Distel, B. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J. Biol. Chem. 277, 25011–25019 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Lazarow, P. B. Viruses exploiting peroxisomes. Curr. Opin. Microbiol. 14, 458–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Mohan, K. V., Som, I. & Atreya, C. D. Identification of a type 1 peroxisomal targeting signal in a viral protein and demonstration of its targeting to the organelle. J. Virol. 76, 2543–2547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosner, M., Freilinger, A. & Hengstschlager, M. Akt regulates nuclear/cytoplasmic localization of tuberin. Oncogene 26, 521–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Van Slegtenhorst, M. et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 7, 1053–1057 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Wienecke, R. et al. Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Oncogene 13, 913–923 (1996).

    CAS  PubMed  Google Scholar 

  51. Zhang, X., Shu, L., Hosoi, H., Murti, K. G. & Houghton, P. J. Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J. Biol. Chem. 277, 28127–28134 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17, 719–730 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Watters, D. et al. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 274, 34277–34282 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Sahin, M., Karauzum, S. B., Perry, G., Smith, M. A. & Aliciguzel, Y. Retinoic acid isomers protect hippocampal neurons from amyloid-beta induced neurodegeneration. Neurotox Res. 7, 243–250 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Mills and Y. Lu (University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA) for the MCF-7 cell line stably expressing GFP–LC3, and RIKEN BRC for providing the ATG5+/+ MEFs and ATG5−/− MEFs. We are also grateful for the assistance of K. Dunner in electron microscopy image acquisition and analysis and T. Berry, X. Tong and S. Hensley for technical assistance. This work was supported by National Institutes of Health (NIH) Grant R01 CA143811 to C.L.W., NIH R01CA157216 to M.B.K., and NIH R01NS058956, the John Merck Fund, and the Children’s Hospital Boston Translational Research Program to M.S. A.R.T. was supported by the Association for International Cancer Research Career Development Fellowship (No. 06-914/915).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., J.K. and C.L.W. designed research; J.Z., J.K., A.A., S.C., D.N.T., R.D., A.R.T., J.T-M., A.D.N., J.M.H., E.K., E.A.D. and K.M.D. performed research; J.Z., J.K., A.R.T., R.D.F., P.L.F., M.B.K., M.S. and C.L.W. analysed data; J.Z., J.K. and C.L.W. wrote the paper.

Corresponding author

Correspondence to Cheryl Lyn Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 TSC2 Localization at the peroxisome.

(a) Representative images of FAO cell showing endogenous TSC2 (green) and MTC02 (mitochondria marker) or EEA1 (endosome marker) (red). (Scale bar - 10 μm). (b) Representative images of TSC2+/+ and TSC2−/− MEFs showing endogenous TSC2 (green) and PMP70 (red). (Scale bar -10 μm). (c and d) Subcellular fractionation of HEK 293 (c) or HeLa (d) cells to separate nuclear (N), cytosolic (C), membrane (M), and peroxisome (P) fractions. Immuno-blot analyses were performed using antibodies to TSC2, TSC1, Rheb, TBC1D7 (HEK 293, Supplementary Fig. S1c), AKT, catalase, PMP70 and lamin A/C. The degree of enrichment for peroxisomes in fractionated lysates was evaluated by assessing markers for endosomes (EEA1), lysosomes (LAMP1) and mitochondria (VDAC). WCE– whole cell extracts. Uncropped images of western blots are shown in Supplementary Fig. S6.

Supplementary Figure 2 Induction of autophagy in response to ROS.

(a) Western analyses of MCF-7 stably expressing GFP-LC3 cells treated with 0.4 mM H2O2 for the indicated time with markers for autophagy (p62 and LC3), mTORC1 signaling (pS6K (T389), S6K, pS6 (S235/236) and S6). (b) Quantitation of the ratio of LC3 II/Actin from Fig. S2a. (±s.e.m., n = 3 independent experiments). *p<0.05,***p<0.001, NS, not significant. (c) Western analysis of GFP-LC3 MCF7 cells pre-incubated in the presence or absence 100 nM Bafilomycin A1 (BafA1) for 1hr before treatement with 0.4 mM H2O2 for 7hr using anti-p62 and LC3 antibodies. (d) Quantitation of the ratio of LC3 II/Actin and p62/Actin from Supplementary Fig. S2c. (±s.e.m., n = 3 independent experiments). *p<0.05,**p<0.01, NS, not significant. (e) Western analysis of Atg5+/+ MEFs and Atg5−/− MEFs treated with 0.4 mM H2O2 for 24hr using anti-p62 and Atg5 antibodies. Uncropped images of western blots are shown in Supplementary Fig. S6. Source data of statistical analysis are shown in Supplementary Table S1.

Supplementary Figure 3 mTORC1 signaling and autophagy in Zellweger cells with ROS and amino acids.

(a) Western analysis of human fibroblasts obtained from Zellweger (GM13269) or corresponding control patient with Ehlers-Danlos syndre (GM13427) treated with indicated doses of H2O2 for 1 hr. mTORC1 signaling monitored by western analysis for pS6K (T389), S6K, pS6 (S235/236), S6, p4E-BP1 (T37/46), 4E-BP1, pATM (S1981), ATM, pAMPK (T172), AMPK, p62 and LC3. (b) Western analysis of Zellweger cells (GM13267) or control fibroblasts (GM15871) cells pre-incubated in the presence or absence of 100 nM Bafilomycin A1 (BafA1) for 1hr before treatment with 0.4 mM H2O2 for 1hr using anti-p62 and LC3 antibodies. (c) Quantitation of the ratio of LC3 II/Actin and p62/Actin from Supplementary Fig. S3b (±s.e.m., n = 3 independent experiments). *p<0.05,**p<0.01,***p<0.001, NS, not significant. (d) Representative western analysis using cell extracts from human fibroblasts obtained from a Zellweger patient (GM13269) or control fibroblasts (GM13427) treated with amino acid free media for 60 min, and stimulated with amino acid containing media for 10 min. mTORC1 signaling was monitored using anti-pS6K (T389), S6K, pS6 (S235/236), S6, p4EBP1(T37/46) and 4EBP1. Uncropped images of western blots are shown in Supplementary Fig. S6. Source data of statistical analysis are shown in Supplementary Table S1.

Supplementary Figure 4 Localization of TSC2 PEX5 binding mutants.

(a) Representative images using HeLa cells transfected with Myc-TSC1 and Flag-TSC2 wild type (WT) and or the Flag-TSC2 PxBS mutants (RQ, RG, RW) stained with Flag (red) and PMP70 (peroxisome marker, green). (Scale bar - 10 μm). (b) Representative images using HeLa cells transfected with Myc-TSC1 and Flag-TSC2 mutants (RQ, RG and RW) stained with Flag (green) and LAMP1 (marker for lysosome, red). As a control, the cells were stained by anti-mTOR (green) and anti-LAMP1 (red). (Scale bar - 10 μm). (c) Representative images using HeLa cells transfected with Myc-TSC1 and Flag-TSC2 mutant (RQ) stained with Flag (red) and either calnexin (marker for endoplasmic reticulum, green) or VDAC (marker for mitochondria, green). (Scale bar - 10 μm). (d) HEK 293 cells were transfected with Myc-TSC1 and Flag-TSC2 wild type (WT) or the Flag-TSC2 mutants (RQ, RG, RW) or Flag-TSC2 L1624P (GAP mutant) or Flag-TSC2 G294E (TSC1 binding mutant). The lysates were immunoprecipitated using anti-Myc and control IgG, and samples were analyzed using anti-Flag and anti-myc antibodies. (e) Functional assays were performed using HEK 293 cells expressing Flag–TSC1, myc–Rheb, and Flag–TSC2 wild type (WT) or Flag-TSC2 mutant (RQ). mTOR signaling was monitored by measuring the ratio of pS6K (T389) to S6K level. Graph represents densitometric quantitation of the ratio of phospho-S6K to total S6K (±s.e.m., n = 3 independent experiments). *p<0.05, **p<0.01. Uncropped images of western blots are shown in Supplementary Fig. S6. Source data of statistical analysis are shown in Supplementary Table S1.

Supplementary Figure 5 Model for TSC complex localization on peroxisomal membranes, and activation of the TSC1-TSC2-Rheb signaling node by peroxisomal ROS to repress mTORC1 and induce autophagy, or inactivation by AKT phosphorylation of TSC2, with subsequent binding of TSC2 by 14-3-3 and sequestration in cytosol.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1891 kb)

Supplementary Table 1

Supplementary Information (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Kim, J., Alexander, A. et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 15, 1186–1196 (2013). https://doi.org/10.1038/ncb2822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing