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            Abstract
Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1,2,3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 chargeâ€“discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.
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                    Fig. 1: Voltage profile and structural characterizations of the pristine and lithiated DRS-Li3+xV2O5.[image: ]


Fig. 2: DFT calculated Li site occupancies and voltage profile for DRS-Li3+xV2O5.[image: ]


Fig. 3: The electrochemical performance of DRS-Li3V2O5.[image: ]


Fig. 4: Li migration barriers at the start of discharge (xÂ â‰ˆÂ 0) and vacancy migration barriers at end of discharge (xÂ â‰ˆÂ 2) in Li3+xV2O5.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 The phase transformation process of V2O5 upon electrochemical lithiation and joint Rietveld refinement of pristine DRS-Li3V2O5.
a, XRD of LixV2O5 (xÂ =Â 0, 0.5, 1, 2, 3). The LixV2O5 was obtained by electrochemical lithiation using a Li||V2O5 cell. The cell was discharged under 0.1Â AÂ gâˆ’1 to 3.25Â V, 2.5Â V, 2.15Â V and 1Â V to generate the Îµ, Î´, Î³ and Ï‰ phases. b, Voltage profile of the electrochemical lithiation of V2O5 down to 0.01Â V. There are five major voltage plateaus at 3.35Â V, 3.18Â V, 2.35Â V, 1.95Â V and 0.52Â V, respectively. c, Neutron diffraction pattern; d, XRD pattern. The X-ray wavelength is 0.1173Â Ã…; the pattern is converted to the wavelength of the Cu source for comparison with the laboratory X-ray data.


Extended Data Fig. 2 In situ XRD study of the DRS-Li3V2O5 during discharge and charge.
a, Comparison of XRD pattern of in situ cells. Carbon paper (C paper) and Cu were used as the current collectors for the DRS-Li3V2O5 in two different AMPIX cells. The X-ray wavelength is 0.24117Â Ã…. b, Voltage profile of the in situ cell with a carbon paper current collector. The DRS-Li3V2O5 electrodes, with active material mass loading of 5Â mg cmâˆ’2, were cycled at a current density of 0.05Â AÂ gâˆ’1 between 0.1Â V and 2.0Â V. c, The corresponding contour plots of the DRS-Li3V2O5 (220) XRD patterns. d, Evolution of the lattice parameter a of DRS-Li3V2O5. e, The evolution of the unit cell volume of DRS-Li3V2O5.


Extended Data Fig. 3 The characterization of the SEI layer on DRS-Li3+xV2O5 and the morphologies of V2O5 and DRS-Li5V2O5.
a, TEM images of DRS-Li3+xV2O5 at 0.01 V on first discharge. The SEI layer is indicated by the red dashed lines. b, The statistical distribution of SEI thickness on the surface of DRS-Li3+xV2O5 at 0.01Â V on first discharge. (counts, the times of measurements of SEI thickness; a.u., arbitrary units.) c, f, SEM images of V2O5 powders. d, g, SEM images of the V2O5 electrode. e, h, SEM images of DRS-Li5V2O5. The DRS-Li5V2O5 was prepared by lithiating the V2O5 electrode at 0.1Â AÂ gâˆ’1 until 0.01Â V. The V2O5 powder shows irregular primary particle shapes with sizes ranging from 350Â nm to 1Â Âµm.


Extended Data Fig. 4 Comparison of site energies in DRS-Li3V2O5 and pseudo-binary Li3V2O5-Li5V2O5 phase diagram from DFT calculations.
a, The DFT relative site energies for the 0-TM (T1) and 1-TM (T2) tetrahedral sites in Li3V2O5. An additional Li ion was inserted in all symmetrically distinct sites in the lowest-energy configuration of the 2Â Ã—Â 2Â Ã—Â 2 supercell of Li19V13O32 (which is equivalent to Li3V2O5). The sites are ordered by increasing site energy, with the energy of the most stable site set as the zero reference. The seven lowest-energy sites (green circles) for Li insertion are 0-TM sites. The 1-TM sites (orange circles) have substantially higher energies (>387Â meV; Ediff, energy difference) for Li insertion. b, Pseudo-binary Li3V2O5â€“Li5V2O5 compound phase diagram computed using the PBE+U functional (fu, formula unit). The two endmembers are Li3V2O5 and Li5V2O5. A finer compositional resolution of xÂ =Â 1/8 increments in Li3+xV2O5 was used in the Li3V2O5â€“Li4V2O5 region to characterize the changes in Li distribution between the tetrahedral and octahedral sites in this region. In the Li4V2O5â€“Li5V2O5 region, a lower compositional resolution of xÂ =Â 1/4 increments in Li3+xV2O5 was used because there are no changes in octahedral Li site occupancy in this region.


Extended Data Fig. 5 Comparison of experimental and FEFF calculated V K-edge XANES spectra reveal the charge compensation mechanism of DRS-Li3+xV2O5.
a, The experimental V K-edge XANES spectra at different states of (dis)charge. The dashed lines are V K-edge XANES spectra of V oxides with different V oxidation states. The oxidation states of V in V2O5, VO2 and V2O3, are +5, +4 and +3, respectively. b, Comparison between experimental and FEFF-calculated V K-edge XANES spectra for Li3V2O5 and Li5V2O5. The average oxidation states of V in Li3V2O5 and Li5V2O5 are +3.5 and +2.5, respectively. c, Experimental and FEFF-calculated V K-edge XANES spectra for V2O5, VO2 and V2O3, with V oxidation states +5, +4, +3, respectively. When V is reduced from the oxidation state of +5 to +3, the experimental V K-edge XANES spectra show a decrease in P/M. FEFF-computed V K-edge XANES spectra show the same trend. d, Experimental and FEFF-calculated V K-edge XANES spectra for Li3VO4 and LiVO2. Data are from Rozier et al.49. The average oxidation states of V in Li3VO4 and LiVO2 are +5 and +3, respectively. A similar decrease in P/M is seen with reduction in V oxidation state.


Extended Data Fig. 6 The electrochemical performance of DRS-Li3V2O5.
a, Voltage profiles of DRS-Li3+xV2O5 over 1,000 cycles at 1Â AÂ gâˆ’1. b, Comparison of the electrochemical performance of DRS-Li3V2O5 with different voltage windows under a current density of 0.1Â AÂ gâˆ’1. c, Voltage profiles of DRS-Li3V2O5 in voltage windows of 0.01â€“2Â V, 0.1â€“2Â V, 0.2â€“2Â V and 0.3â€“2Â V, respectively. d, The initial charge voltage curve of a Li||LiNi0.8Mn0.1Co0.1O2 half-cell under 0.1Â AÂ gâˆ’1 and the discharge voltage curve of a Li||DRS-Li3V2O5 half-cell under 0.1Â AÂ gâˆ’1 were used to simulate the charge voltage profile of a DRS-Li3V2O5||LiNi0.8Mn0.1Co0.1O2 full cell. e, Voltage profiles of a Li||LiNi0.8Mn0.1Co0.1O2 half-cell under chargeâ€“discharge current densities of 0.1Â AÂ gâˆ’1 and 0.5Â AÂ gâˆ’1, with voltage window 2.8â€“4.3Â V. The LiNi0.8Mn0.1Co0.1O2 delivered specific capacities of 190Â mAÂ hÂ gâˆ’1 and 160Â mAÂ hÂ gâˆ’1 under 0.1Â AÂ gâˆ’1 and 0.5Â AÂ gâˆ’1, respectively. f, Voltage profiles of a DRS-Li3V2O5||LiNi0.8Mn0.1Co0.1O2 full cell under chargeâ€“discharge current densities of 0.1Â AÂ gâˆ’1 and 0.5Â AÂ gâˆ’1, with voltage window 1.5â€“3.9Â V. The full cell delivered specific capacities of 189Â mAÂ hÂ gâˆ’1 and 155Â mAÂ hÂ gâˆ’1 under 0.1Â AÂ gâˆ’1 and 0.5Â AÂ gâˆ’1, respectively. g, Discharge voltage profiles of DRS-Li3V2O5 with 30Â wt% of carbon under various chargeâ€“discharge current densities, with voltage window 0.01â€“2.0Â V. h, Discharge voltage profiles of DRS-Li3V2O5 with 10Â wt% of carbon under various chargeâ€“discharge current densities, with voltage window 0.01â€“2.0Â V. i, XRD patterns of DRS-Li3V2O5 prepared by different methods. Comparison of the electrochemical (Echem) performance of the fresh DRS-Li3V2O5 and the aged DRS-Li3V2O5 prepared by chemical (Chem) synthesis. j, Cycling stability (Ch, charge; DCh, discharge) under a current density of 0.1Â AÂ gâˆ’1. k, Representative voltage profiles of chemically synthesized DRS-Li3V2O5.


Extended Data Fig. 7 The failure mechanism of LiNi0.8Mn0.1Co0.1O2 (NMC811).
a, SEM images of pristine LiNi0.8Mn0.1Co0.1O2, showing agglomerated spherical secondary particles with diameters ranging from 6Â Âµm to 25Â Âµm. b, c, SEM images of the LiNi0.8Mn0.1Co0.1O2 from the DRS-Li3V2O5||LiNi0.8Mn0.1Co0.1O2 full cell after 1,000 cycles. The cycled LiNi0.8Mn0.1Co0.1O2 exhibits different degrees of cracking on their secondary particles. dâ€“f, XPS of the separator from the cycled DRS-Li3V2O5||LiNi0.8Mn0.1Co0.1O2 full cell: d, Ni 2p region; e, Mn 2p region; f, Co 2p region. The separator is from the DRS-Li3V2O5||LiNi0.8Mn0.1Co0.1O2 full cell after 1,000 cycles. The Ni 2p peak is clearly presented, while no signal appears in the Mn 2p and Co 2p regions. (CPS, counts per second.) gâ€“j, XPS of the DRS-Li3V2O5 electrode from the same full cell before and after etching: g, Ni 2p region; h, O 1s and V 2p region; i, Mn 2p region; j, Co 2p region. Similar to the separator, there is only Ni on the anode side, further confirming the dissolution of Ni from the cathode. kâ€“n, XPS of the LiNi0.8Mn0.1Co0.1O2 electrode from the same full cell: k, Ni 2p region; l, O 1s and V 2p region; m, Mn 2p region; n, Co 2p region. The lack of V signal on the cathode side suggests that the DRS-Li3V2O5 anode does not suffer from metal dissolution.


Extended Data Fig. 8 NEB barriers categorized by their mechanism at the start (xÂ â‰ˆ0) and end (xÂ â‰ˆÂ 2) of the discharge in Li3+xV2O5.
Panels aâ€“c refer to Li interstitial migration barriers in Li19V13O32 (equivalent to Li3V2O5) and panels d and e refer to Li vacancy migration in Li32V13O32 (equivalent to Li5V2O5). a, Concerted Li migration barriers in Li3V2O5 based on four representative configurations. Five paths from four orderings contribute to super-low NEB barriers ranging from 166Â meV to 290Â meV. The hopping type is opposing T1-O-T1, which refers to cooperative hops between two T1 (0-TM) tetrahedral sites through an octahedral site. The relative positions between the initial and final tetrahedral sites are opposing versus the central octahedral site. b, Concerted Li migration barriers in Li3V2O5 based on four representative configurations. Seven paths from four orderings contribute to relatively low NEB barriers ranging from 204Â meV to 435Â meV. The hopping type is corner-sharing T1-O-T1, which refers to cooperative hops between two T1 (0-TM) tetrahedral sites through an octahedral site. The relative positions between the initial and final tetrahedral sites are corner-shared with each other. c, Direct Li migration barriers in Li3V2O5 based on four representative configurations. Four paths from four orderings contribute to high NEB barriers ranging from 634Â meV to 1,049Â meV. The hopping type is edge-sharing T1-T1, which refers to the direct hops between two nearest edge-sharing T1 (0-TM) tetrahedral sites. d, Vacancy migration barriers in the lowest-energy configuration of Li5V2O5. Direct tetrahedron-to-tetrahedron (t-t) hops with super-low NEB barriers ranging from 181Â meV to 310Â meV. e, Hops by the t-o-t mechanism refer to the migration from one tetrahedron to the other through an empty face-shared octahedron. The barriers from 703Â meV to 1,109Â meV are much higher than for the direct t-t mechanism, which makes this mechanism unfavourable.


Extended Data Fig. 9 Four representative configurations of Li19V13O32 (equivalent to Li3V2O5) with low energies and the most stable ordered structures of Li3+xV2O5 (xÂ =Â 0, 1, 2) after structure enumeration.
The configurations a to d are obtained from 2Â Ã—Â 2Â Ã—Â 2 supercells of the rock salt cubic conventional cell. Octahedral sites are fully occupied by Li/V atoms (green octahedra are LiO6; red octahedra are VO6). These representative configurations were used for NEB calculations at the start of discharge. e, LiO4 tetrahedra and LiO6 octahedra are shown as blue and green polyhedral, respectively, when red ones are for VO6 octahedra. From the structure of Li3V2O5 to Li4V2O5, the majority of octahedral Li transfer to tetrahedral Li, which is consistent with site occupancy results in Fig. 2c. When Li continues to be inserted, the number of LiO6 octahedra remain the same and LiO4 tetrahedra keep increasing.


Extended Data Table 1 Results of joint refinement of X-ray and neutron diffraction of DRS-Li3V2O5 powdersFull size table
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