Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-free directed sp2-C–H borylation

Abstract

Organoboron reagents are important synthetic intermediates that have a key role in the construction of natural products, pharmaceuticals and organic materials1. The discovery of simpler, milder and more efficient approaches to organoborons can open additional routes to diverse substances2,3,4,5. Here we show a general method for the directed C–H borylation of arenes and heteroarenes without the use of metal catalysts. C7- and C4-borylated indoles are produced by a mild approach that is compatible with a broad range of functional groups. The mechanism, which is established by density functional theory calculations, involves BBr3 acting as both a reagent and a catalyst. The potential utility of this strategy is highlighted by the downstream transformation of the formed boron species into natural products and drug scaffolds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for directed C–H bond borylation.
Fig. 2: Substrate scope of directed C–H borylation of (hetero)arenes.
Fig. 3: Applications of the metal-free directed C–H borylation strategy.
Fig. 4: DFT calculations for the reaction of 1a with BBr3.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding authors upon request. Metrical parameters for the structures of 1b, 9c, 28b, 28c and 1d are available free of charge from the Cambridge Crystallographic Data Centre (https://www. ccdc.cam.ac.uk/) under reference numbers CCDC 1910131, 1910132, 1910134, 1910135 and 1910137, respectively.

References

  1. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    Article  CAS  Google Scholar 

  2. Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science 351, 1421–1424 (2016).

    Article  ADS  CAS  Google Scholar 

  3. Smith, K. T. et al. Catalytic borylation of methane. Science 351, 1424–1427 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Article  ADS  CAS  Google Scholar 

  5. Li, C. et al. Decarboxylative borylation. Science 356, eaam7355 (2017).

    Article  Google Scholar 

  6. Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).

    Article  CAS  Google Scholar 

  7. Murai, S. et al. Efficient catalytic addition of aromatic carbon–hydrogen bonds to olefins. Nature 366, 529–531 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    Article  CAS  Google Scholar 

  9. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E., Jr & Smith, M. R., III. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  ADS  CAS  Google Scholar 

  10. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  Google Scholar 

  11. Ros, A., Fernández, R. & Lassaletta, J. M. Functional group directed C–H borylation. Chem. Soc. Rev. 43, 3229–3243 (2014).

    Article  CAS  Google Scholar 

  12. Letsinger, R. L. & MacLean, D. B. Organoboron compounds. XVI. Cooperative functional group effects in reactions of boronoarylbenzimidazoles. J. Am. Chem. Soc. 85, 2230–2236 (1963).

    Article  CAS  Google Scholar 

  13. Davis, F. A. & Dewar, M. J. S. New heteroaromatic compounds. XXX. A derivative of 10, 9-borathiarophenanthrene. J. Am. Chem. Soc. 90, 3511–3515 (1968).

    Article  CAS  Google Scholar 

  14. Ishida, N., Moriya, T., Goya, T. & Murakami, M. Synthesis of pyridine–borane complexes via electrophilic aromatic borylation. J. Org. Chem. 75, 8709–8712 (2010).

    Article  CAS  Google Scholar 

  15. Berger, F. et al. Site-selective and versatile aromatic C–H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    Article  ADS  CAS  Google Scholar 

  16. Stuart, D. R. & Fagnou, K. The catalytic cross-coupling of unactivated arenes. Science 316, 1172–1175 (2007).

    Article  ADS  CAS  Google Scholar 

  17. Sandtorv, A. H. Transition metal-catalysed C–H activation of indoles. Adv. Syn. Cat. 357, 2403–2435 (2015).

    Article  CAS  Google Scholar 

  18. Légaré, M.-A., Courtemanche, M.-A., Rochette, É. & Fontaine, F.-G. Metal-free catalytic C–H bond activation and borylation of heteroarenes. Science 349, 513–516 (2015).

    Article  ADS  Google Scholar 

  19. Toutov, A. A. et al. Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst. Nature 518, 80–84 (2015).

    Article  ADS  CAS  Google Scholar 

  20. Robbins, D. W., Boebel, T. A. & Hartwig, J. F. Iridium-catalyzed, silyl-directed borylation of nitrogen-containing heterocycles. J. Am. Chem. Soc. 132, 4068–4069 (2010).

    Article  CAS  Google Scholar 

  21. Yang, Y., Qiu, X., Zhao, Y., Mu, Y. & Shi, Z. Palladium-catalyzed C–H arylation of indoles at the C7 position. J. Am. Chem. Soc. 138, 495–498 (2016).

    Article  CAS  Google Scholar 

  22. Xu, L., Zhang, C., He, Y., Tan, L. & Ma, D. Rhodium-catalysed regioselective C7-functionalization of N-pivaloylindoles. Angew. Chem. Int. Ed. 55, 321–325 (2016).

    Article  CAS  Google Scholar 

  23. Yang, Y., Gao, P., Zhao, Y. & Shi, Z. Regiocontrolled direct C–H arylation of indoles at the C4 and C5 positions. Angew. Chem. Int. Ed. 56, 3966–3971 (2017).

    Article  CAS  Google Scholar 

  24. Qiu, X., Deng, H., Zhao, Y. & Shi, Z. Rhodium-catalyzed, P-directed selective C7 arylation of indoles. Sci. Adv. 4, eaau6468 (2018).

    Article  ADS  CAS  Google Scholar 

  25. Qiu, X. et al. PIII-chelation-assisted indole C7-arylation, olefination, methylation, and acylation with carboxylic acids/anhydrides by rhodium catalysis. Angew. Chem. Int. Ed. 58, 1504–1508 (2019).

    Article  CAS  Google Scholar 

  26. Wang, D., Xue, X.-S., Houk, K. N. & Shi, Z. Mild ring-opening 1,3-hydroborations of non-activated cyclopropanes. Angew. Chem. Int. Ed. 57, 16861–16865 (2018).

    Article  CAS  Google Scholar 

  27. Wang, C. & Sperry, J. Iridium-catalyzed C–H borylation-based synthesis of natural indolequinones. J. Org. Chem. 77, 2584–2587 (2012).

    Article  CAS  Google Scholar 

  28. Zhang, Y.-H. & Yu, J.-Q. Pd(II)-catalyzed hydroxylation of arenes with 1 atm of O2 or air. J. Am. Chem. Soc. 131, 14654–14655 (2009).

    Article  CAS  Google Scholar 

  29. Barluenga, J., Tomás-Gamasa, M., Aznar, F. & Valdés, C. Metal-free carbon–carbon bond-forming reductive coupling between boronic acids and tosylhydrazones. Nat. Chem. 1, 494–499 (2009).

    Article  CAS  Google Scholar 

  30. De Vries, T. S., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank group members Z. Li, X. Han, H. Deng, Z. Zhu and J. Qian for reproducing the results in the project. We acknowledge the Chinese ‘Thousand Youth Talents Plan’, the National Natural Science Foundation of China (grant 21672097), and the ‘Innovation & Entrepreneurship Talents Plan’ of Jiangsu Province in China (to Z.S.), and the National Science Foundation of the USA (CHE-1764328 to K.N.H.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Z.S. conceived the project and directed the research. K.N.H. and Y. Liang supervised the mechanistic study. Z.S. and K.N.H. wrote the paper. J.L., B.Z. and M.W. performed the experiments. X.C. and X.-S.X. performed the DFT calculations. L.J. assisted with operando infrared spectroscopy experiments. Y.Z. performed the crystallographic studies. Y.Y., Y.H., Y. Lu, J.Z. and W.-Y.S. discussed the results.

Corresponding authors

Correspondence to Kendall. N. Houk or Zhuangzhi Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Julia Rehbein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains: 1. General information; 2. Synthesis of substrates; 3. Investigation of reaction conditions; 4. Experimental procedures and characterization of products; 5. Applications of metal-free directed C-H borylation strategy; 6. Mechanistic investigations; 7. Crystallographic data; 8. References; and 9. Copies of 1H, 13C and 19F NMR spectra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Chen, X., Xue, XS. et al. Metal-free directed sp2-C–H borylation. Nature 575, 336–340 (2019). https://doi.org/10.1038/s41586-019-1640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1640-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing