Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of a eukaryotic phosphate transporter

Abstract

Phosphate is crucial for structural and metabolic needs, including nucleotide and lipid synthesis, signalling and chemical energy storage. Proton-coupled transporters of the major facilitator superfamily (MFS) are essential for phosphate uptake in plants and fungi, and also have a function in sensing external phosphate levels as transceptors1,2,3,4,5. Here we report the 2.9 Å structure of a fungal (Piriformospora indica) high-affinity phosphate transporter, PiPT, in an inward-facing occluded state, with bound phosphate visible in the membrane-buried binding site. The structure indicates both proton and phosphate exit pathways and suggests a modified asymmetrical ‘rocker-switch’ mechanism of phosphate transport. PiPT is related to several human transporter families, most notably the organic cation and anion transporters of the solute carrier family (SLC22), which are implicated in cancer-drug resistance6,7. We modelled representative cation and anion SLC22 transporters based on the PiPT structure to surmise the structural basis for substrate binding and charge selectivity in this important family. The PiPT structure demonstrates and expands on principles of substrate transport by the MFS transporters and illuminates principles of phosphate uptake in particular.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the high-affinity phosphate transporter, PiPT.
Figure 2: The proposed proton exit pathway.
Figure 3: Proposed mechanism of phosphate transport.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank with the accession number 4J05.

References

  1. Pao, S. S., Paulsen, I. T. & Saier, M. H., Jr Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Persson, B. L. et al. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet. 43, 225–244 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Nussaume, L. et al. Phosphate import in plants: Focus on the PHT1 transporters. Front. Plant Sci. 2, 83 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Giots, F., Donaton, M. C. V. & Thevelein, J. M. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 47, 1163–1181 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Popova, Y., Thayumanavan, P., Lonati, E., Agrochao, M. & Thevelein, J. Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc. Natl Acad. Sci. USA 107, 2890–2895 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giacomini, K. M. et al. Membrane transporters in drug development. Nature Rev. Drug Discov. 9, 215–236 (2010)

    Article  CAS  Google Scholar 

  7. Hediger, M. A. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch. 447, 465–468 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Hirai, T. et al. Three-dimensional structure of a bacterial oxalate transporter. Nature Struct. Biol. 9, 597–600 (2002)

    CAS  PubMed  Google Scholar 

  9. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yin, Y., He, X., Szewczyk, P., Nguyen, T. & Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 312, 741–744 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dang, S. et al. Structure of a fucose transporter in an outward-open conformation. Nature 467, 734–738 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Newstead, S. et al. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 30, 417–426 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Solcan, N. et al. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 31, 3411–3421 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, L. et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490, 361–366 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Holyoake, J. & Sansom, M. S. P. Conformational change in an MFS protein: MD simulations of LacY. Structure 15, 873–884 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Smirnova, I. et al. Sugar binding induces an outward facing conformation of LacY. Proc. Natl Acad. Sci. USA 104, 16504–16509 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Madej, M. G., Soro, S. N. & Kaback, H. R. Apo-intermediate in the transport cycle of lactose permease (LacY). Proc. Natl Acad. Sci. USA 109, 2970–2978 (2012)

    Article  ADS  Google Scholar 

  19. Varma, A., Bakshi, M., Lou, B., Hartmann, A. & Oelmueller, R. Piriformospora indica: A novel plant growth-promoting mycorrhizal fungus. Agric. Res. 1, 117–131 (2012)

    Article  Google Scholar 

  20. Yadav, V. et al. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J. Biol. Chem. 285, 26532–26544 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fredriksson, R., Nordström, K. J. V., Stephansson, O., Hägglund, M. G. A. & Schiöth, H. B. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 582, 3811–3816 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Schlessinger, A. et al. Comparison of human solute carriers. Protein Sci. 19, 412–428 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Forrest, L. R., Krämer, R. & Ziegler, C. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807, 167–188 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. Samyn, D. R. et al. Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H+ transceptor and its effect on signalling to the PKA and PHO pathways. Biochem. J. 445, 413–422 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Kaback, H. R., Smirnova, I., Kasho, V., Nie, Y. & Zhou, Y. The alternating access transport mechanism in LacY. J. Membr. Biol. 239, 85–93 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Krupka, R. M. Coupling mechanisms in active transport. Biochim. Biophys. Acta 1183, 105–113 (1993)

    Article  CAS  PubMed  Google Scholar 

  27. Luecke, H. & Quiocho, F. A. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347, 402–406 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Vyas, N. K., Vyas, M. N. & Quiocho, F. A. Crystal structure of M tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure 11, 765–774 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Morales, R. et al. Serendipitous discovery and X-ray structure of a human phosphate binding apolipoprotein. Structure 14, 601–609 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Feng, B., Dresser, M. J., Shu, Y., Johns, S. J. & Giacomini, K. M. Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 40, 5511–5520 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Mumberg, D., Müller, R. & Funk, M. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22, 5767–5768 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, M. et al. Selecting optimum eukaryotic integral membrane proteins for structure determination by rapid expression and solubilization screening. J. Mol. Biol. 385, 820–830 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pedersen, B. P., Morth, J. P. & Nissen, P. Structure determination using poorly diffracting membrane protein crystals—Lessons from the H+ and Na+,K+-ATPases. Acta Crystallogr. D 66, 309–313 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Terwisscha van Scheltinga, A. C., Valegård, K., Hajdu, J. & Andersson, I. MIR phasing using merohedrally twinned crystals. Acta Crystallogr. D 59, 2017–2022 (2003)

    Article  PubMed  Google Scholar 

  38. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Cowtan, K. ‘dm’: An automated procedure for phase improvement by density modification. CCP4 Newsl. Protein Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  40. Keller, S., Pojer, F., Heide, L. & Lawson, D. M. Molecular replacement in the ‘twilight zone’: structure determination of the non-haem iron oxygenase NovR from Streptomyces spheroides through repeated density modification of a poor molecular-replacement solution. Acta Crystallogr. D 62, 1564–1570 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  42. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCoy, A. J. Liking likelihood. Acta Crystallogr. D 60, 2169–2183 (2004)

    Article  PubMed  CAS  Google Scholar 

  44. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. Petřek, M., Košinová, P., Koča, J. & Otyepka, M. MOLE: A Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15, 1357–1363 (2007)

    Article  PubMed  CAS  Google Scholar 

  47. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. The PyMOL Molecular Graphics System, Version 1.5.0.4 (Schrödinger LLC, 2012)

  49. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pei, J., Kim, B.-H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Käll, L., Krogh, A. & Sonnhammer, E. L. L. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036 (2004)

    Article  PubMed  CAS  Google Scholar 

  52. Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    Article  PubMed  Google Scholar 

  53. Shen, M.-Y. & Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krivov, G. G., Shapovalov, M. V. & Dunbrack, R. L., Jr Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778–795 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  PubMed  Google Scholar 

  56. Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B. & Lindahl, E. Implementation of the CHARMM Force Field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6, 459–466 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  ADS  CAS  Google Scholar 

  58. Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  ADS  CAS  Google Scholar 

  62. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  ADS  PubMed  CAS  Google Scholar 

  63. Parrinello, M. & Rahman, A. Polymorphic transitions in single-crystals - a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Giacomini for discussions about SLC transporters; P. Nissen for comments that improved the manuscript; J. Holton, G. Meigs, C. Ogata and N. Venugopalan for assistance with synchrotron data collection at the Advanced Light Source and Advanced Photon Source; and C. Waddling, P. Wassam and M. Tessema for technical assistance. B.P.P. was supported by a postdoctoral fellowship from the Carlsberg Foundation and later by a fellowship from the Danish Cancer Society; H.K. by a fellowship from Woods Whelan foundation, Council of Scientific and Industrial Research, Government of India, and a travel grant from Jawaharlal Nehru University, New Delhi.; A.Sc. by NIH postdoctoral fellowship F32 GM088991; A.Sa. by NIH grants U54 GM094625 and U01 GM61390; A.K.J. by a Research Assistant Professorship to do work at UCSF from the American Society for Microbiology; and R.M.S. by NIH grants U54 GM094625, GM24485 and GM073210.

Author information

Authors and Affiliations

Authors

Contributions

B.P.P. did expression, purification and crystallization experiments, collected and processed the data, and determined, refined and analysed the structure. H.K. identified the target, did purification and crystallization experiments, collected data and identified the use of NG for crystallization. A.B.W. optimized the yeast expression system, and assisted in data collection and data analysis. A.J.R. helped with protein purification and crystallization. Z.R.-Z. assisted in optimization of the yeast expression system, cloned, expressed, purified and characterized the target, and set up initial crystallization experiments. B.H.C. did cloning, expression tests and cell growth. A.Sc. performed bioinformatics analysis and built human homology models. M.B. did molecular dynamics and analysed the results. W.H. trained H.K. and assisted H.K. in data collection. A.Sa. supervised homology modelling, bioinformatics analysis and molecular dynamics. A.K.J. identified the target and initiated the project. R.M.S. supervised the project and analysed the structure. B.P.P. and R.M.S. wrote the paper with input from H.K., A.B.W., A.Sc., A.Sa. and A.K.J.

Corresponding author

Correspondence to Robert M. Stroud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10, Supplementary Tables 1-2, Supplementary Alignments 1-2 and additional references. (PDF 14710 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, B., Kumar, H., Waight, A. et al. Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533–536 (2013). https://doi.org/10.1038/nature12042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12042

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing