Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters

Abstract

Plant high-affinity K+ transporters (HKTs) play a pivotal role in maintaining the balance of Na+ and K+ ions in plants, thereby influencing plant growth under K+-depleted conditions and enhancing tolerance to salinity stress. Here we report the cryo-electron microscopy structures of Oryza sativa HKT2;1 and HKT2;2/1 at overall resolutions of 2.5 Å and 2.3 Å, respectively. Both transporters adopt a dimeric assembly, with each protomer enclosing an ion permeation pathway. Comparison between the selectivity filters of the two transporters reveals the critical roles of Ser88/Gly88 and Val243/Gly243 in determining ion selectivity. A constriction site along the ion permeation pathway is identified, consisting of Glu114, Asn273, Pro392, Pro393, Arg525, Lys517 and the carboxy-terminal Trp530 from the neighbouring protomer. The linker between domains II and III adopts a stable loop structure oriented towards the constriction site, potentially participating in the gating process. Electrophysiological recordings, yeast complementation assays and molecular dynamics simulations corroborate the functional importance of these structural features. Our findings provide crucial insights into the ion selectivity and transport mechanisms of plant HKTs, offering valuable structural templates for developing new salinity-tolerant cultivars and strategies to increase crop yields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM determination of O. sativa HKT2;1 and HKT2;2/1 structures.
Fig. 2: Constriction sites in HKT2;1 and HKT2;2/1.
Fig. 3: Comparison between the SFs in HKT2;1 and HKT2;2/1.
Fig. 4: Electrophysiological studies on SF mutants of HKT2;2/1.
Fig. 5: Distinct permeation capabilities of Na+ and K+ ions in HKT2;1 and HKT2;2/1 revealed by MD simulations.
Fig. 6: A stable loop structure of the II–III linker in HKT2;1.
Fig. 7: A C-terminal tail crossing the dimeric interface.

Similar content being viewed by others

Data availability

The atomic coordinates and EM maps of HKT2;1 (PDB: 8K66; EMDB: EMD-36918) and HKT2;2/1 (PDB: 8K69; EMDB: EMD-36919) have been deposited in the Protein Data Bank (http://www.rcsb.org) and the Electron Microscopy Data Bank (https://www.ebi.ac.uk/pdbe/emdb/). Source data are provided with this paper.

References

  1. Riedelsberger, J. et al. Plant HKT channels: an updated view on structure, function and gene regulation. Int. J. Mol. Sci. 22, 1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rubio, F., Gassmann, W. & Schroeder, J. I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270, 1660–1663 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Schachtman, D. P. & Schroeder, J. I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370, 655–658 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Horie, T. et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J. 26, 3003–3014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haro, R., Banuelos, M. A., Senn, M. E., Barrero-Gil, J. & Rodriguez-Navarro, A. HKT1 mediates sodium uniport in roots: pitfalls in the expression of HKT1 in yeast. Plant Physiol. 139, 1495–1506 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mian, A. et al. Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J. 68, 468–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Benito, B., Haro, R., Amtmann, A., Cuin, T. A. & Dreyer, I. The twins K+ and Na+ in plants. J. Plant Physiol. 171, 723–731 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Horie, T., Hauser, F. & Schroeder, J. I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci. 14, 660–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ali, Z. et al. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K(+) specificity in the presence of NaCl. Plant Physiol. 158, 1463–1474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oomen, R. J. et al. HKT2;2/1, a K+-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J. 71, 750–762 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Hamamoto, S. et al. HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr. Opin. Biotechnol. 32, 113–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Sunarpi et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44, 928–938 (2005).

  13. Berthomieu, P. et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22, 2004–2014 (2003).

  14. Hrmova, M. & Gilliham, M. Plants fighting back: to transport or not to transport, this is a structural question. Curr. Opin. Plant Biol. 46, 68–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Uozumi, N. et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol. 122, 1249–1259 (2000).

  16. Horie, T. et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27, 129–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Platten, J. D. et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci. 11, 372–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Jabnoune, M. et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol. 150, 1955–1971 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cotsaftis, O., Plett, D., Shirley, N., Tester, M. & Hrmova, M. A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS ONE 7, e39865 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, B. et al. Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity. Cell. Mol. Life Sci. 75, 1133–1144 (2018).

  21. Xu, B., Hrmova, M. & Gilliham, M. High affinity Na+ transport by wheat HKT1;5 is blocked by K. Plant Direct 4, e00275 (2020).

  22. Corratge-Faillie, C. et al. Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell. Mol. Life Sci. 67, 2511–2532 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Almeida, P., Katschnig, D. & de Boer, A. H. HKT transporters—state of the art. Int. J. Mol. Sci. 14, 20359–20385 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diatloff, E., Kumar, R. & Schachtman, D. P. Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter. FEBS Lett. 432, 31–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Maser, P. et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl Acad. Sci. USA 99, 6428–6433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ali, A. et al. A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiol. 171, 2112–2126 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rubio, F., Schwarz, M., Gassmann, W. & Schroeder, J. I. Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J. Biol. Chem. 274, 6839–6847 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Almeida, P. M., de Boer, G. J. & de Boer, A. H. Assessment of natural variation in the first pore domain of the tomato HKT1;2 transporter and characterization of mutated versions of SlHKT1;2 expressed in Xenopus laevis oocytes and via complementation of the salt sensitive athkt1;1 mutant. Front. Plant Sci. 5, 600 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Durell, S. R. & Guy, H. R. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys. J. 77, 789–807 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao, Y. et al. Crystal structure of a potassium ion transporter, TrkH. Nature 471, 336–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vieira-Pires, R. S., Szollosi, A. & Morais-Cabral, J. H. The structure of the KtrAB potassium transporter. Nature 496, 323–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Cao, Y. et al. Gating of the TrkH ion channel by its associated RCK protein TrkA. Nature 496, 317–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szollosi, A., Vieira-Pires, R. S., Teixeira-Duarte, C. M., Rocha, R. & Morais-Cabral, J. H. Dissecting the molecular mechanism of nucleotide-dependent activation of the KtrAB K+ transporter. PLoS Biol. 14, e1002356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang, H. et al. TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential. Nat. Commun. 11, 547 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Diskowski, M. et al. Helical jackknives control the gates of the double-pore K+ uptake system KtrAB. eLife 6, e24303 (2017).

  37. Yao, X. et al. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol. 152, 341–355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki, K. et al. OsHKT2;2/1-mediated Na(+) influx over K(+) uptake in roots potentially increases toxic Na(+) accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress. J. Plant Res. 129, 67–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 89, 3736–3740 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, C. H. & MacKinnon, R. Structures of the human HCN1 hyperpolarization-activated channel. Cell 168, 111–120.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, M. et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Derebe, M. G. et al. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites. Proc. Natl Acad. Sci. USA 108, 598–602 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Derebe, M. G., Zeng, W., Li, Y., Alam, A. & Jiang, Y. Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc. Natl Acad. Sci. USA 108, 592–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Napolitano, L. M. et al. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels. Proc. Natl Acad. Sci. USA 112, E3619–E3628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, T. B., Gassmann, W., Rubio, F., Schroeder, J. I. & Glass, A. D. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol. 118, 651–659 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Riedelsberger, J., Vergara-Jaque, A., Pineros, M., Dreyer, I. & Gonzalez, W. An extracellular cation coordination site influences ion conduction of OsHKT2;2. BMC Plant Biol. 19, 316 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang, O. et al. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436, 45–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, H. et al. Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia. Nat. Commun. 14, 4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jo, S., Kim, T. & Im, W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM‐GUI: a web‐based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  55. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  56. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  57. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  58. Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  59. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  60. Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Matsuda, T. & Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA 101, 16–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80 (2005).

    Article  PubMed  Google Scholar 

  64. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. DeLano, W. L. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).

    Google Scholar 

  81. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cryo-EM Facility and Supercomputer Center of Westlake University for providing data collection and computation support. This work was supported by the National Natural Science Foundation of China (grant nos. 32122042 and 32071208 to H.S. and 32122040 and 31971040 to F.Y.), the Zhejiang Provincial Natural Science Foundation (grant no. LR20C050002 to F.Y.) and the Westlake Education Foundation (to H.S.).

Author information

Authors and Affiliations

Authors

Contributions

H.S. conceived the project. X.W., X.S. and C.W. performed the molecular cloning, protein expression and purification, cryo-sample preparation and electron micrography data collection. Y.Q. conducted the structure reconstruction and model building. H.Z. carried out the electrophysiological experiments under the supervision of F.Y. All authors contributed to the data analysis. H.S. wrote the manuscript.

Corresponding authors

Correspondence to Fan Yang or Huaizong Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Ingo Dreyer, Maria Hrmova and Ming Zhou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sequence alignment of plant HKT and bacterial Ktr/Trk transporters.

The sequences of plant HKT and bacterial Ktr/Trk transporters were aligned with the Clustal Omega program82 and colored with ENDscript 283. Invariant residues are shaded in red, while conserved residues are colored red. Critical regions discussed in the paper are underlined and labeled. Red-filled circles indicate residues comprising the constriction site. Red-filled triangles indicate the conserved SF residues of ‘SGGG’ or ‘GGGG’. The secondary structures of rice HKT2;1 are depicted above aligned sequences. It is worth noting that the majority of Class I HKT transporters feature an SF sequence of ‘SGGG’ with the four residues originating from Domain I to IV, respectively. In contrast, most Class II HKT transporters possess an SF sequence of ‘GGGG’.

Extended Data Fig. 2 Protein purification, flowchart for EM data processing, and local-resolution maps.

(a) Size exclusion chromatography (SEC) profile of HKT2;2/1 and corresponding SDS-PAGE gel with coomassie-blue staining. Peak fractions of SEC were concentrated before preparing cryo-samples for data collection. (b) Flowchart for cryo-EM data processing. Please refer to the ‘Image processing’ section in the Methods for details. (c) The local-resolution maps for HKT2;1 and HKT2;2/1 were calculated by Relion and presented in Chimera.

Source data

Extended Data Fig. 3 EM densities for the transmembrane segments of HKT2;1 and HKT2;2/1.

The electron microscopy (EM) densities for the transmembrane segments of HKT2;1 (a) and HKT2;2/1 (b) are visualized using UCSF ChimeraX. Residues with large side chains are labeled. Critical residues discussed in the paper are highlighted with red shading.

Extended Data Fig. 4 EM densities for the SF, constriction sites, and II-III linker of HKT2;1 and HKT2;2/1.

(a) The electron microscopy (EM) densities corresponding to the selectivity filters (SF) are of high quality, which allows for accurate model building. Residues and the coordinated ions are labeled. Ser88 and Val243 in HKT2;1, and Gly88 and Gly243 in HKT2;2/1, which play crucial roles in ion selectivity, are highlighted in red shading. The densities are contoured at 12σ and 10σ for HKT2;1 and HKT2;2/1, respectively. (b) (c) The EM densities for constriction sites (b) and II-III linker of HKT2;1 (c) are contoured at 10σ and 8σ, respectively. All figures were prepared in PyMOL.

Extended Data Fig. 5 III-IV linker and bound lipids.

(a) The III-IV linker of HKT2;2/1, modeled with polyalanine, is visualized using ChimeraX. The linker and corresponding densities are colored red for clarity. Two perpendicular views are shown. (b) Both structures of HKT2;1 and HKT2;2/1 exhibit an abundance of bound lipids. HKT transporters are color-coded in the upper panel, while the bound lipids are visualized in light gray. In the lower panel, detailed densities for representative lipids are depicted. All figures are prepared in ChimerX.

Extended Data Fig. 6 Yeast complementation assay on residues at the constriction site or II-III linker in HKT2;2/1.

Yeast strains incapable of K+ absorption under low-K+ concentrations were transformed with plasmids containing wild-type (WT) HKT2;2/1 or its mutants carrying mutations of constriction site or II-III linker residues. The transformed yeasts were then subjected to growth tests under low-K+ concentrations. To ensure cross-validation, a series of dilutions of the seeding yeast were plated on two parallel rows. Two batches of yeast cultures, totaling four parallel rows, were plated on the same plate as biological replicates. E114Y mutation and substitution of the II-III linker with a flexible sequence consisting of 3 × GlyGlyGlySer (labeled as GS) in HKT2;2/1 substantially impaired the yeast’s growth on the K+-depleted medium compared with the wild type, while the effects of E114A, K517A, and R515A were either minimal or absent, suggesting that mutations of the constriction site residues to amino acids with bulky side chains may be necessary to effectively influence the ion conduction of the transporters. Experiments were repeated three times with representative results displayed.

Extended Data Fig. 7 Comparison of the selectivity filters from different channels.

The selectivity filters (SF) of KcsA, CNGA1, and NaK are illustrated, with the diagonal distances between the opposing coordinating oxygen atoms indicated.

Extended Data Fig. 8 Representative current traces of HKT2;1, HKT2;2/1 and their SF mutants.

Representative current traces of HKT2;1, HKT2;2/1, or their mutants carrying mutations of critical SF residues. The currents were elicited by a series of voltage steps from -120 mV to 60 mV with a 20-mV interval in bath solutions containing 135 mM NaCl or KCl.

Extended Data Fig. 9 Yeast complementation assay on SF mutants of HKT.

Yeast strains incapable of K+ absorption under low-K+ concentrations were transformed with plasmids containing wild-type (WT) HKT2;1 / HKT2;2/1 or their mutants carrying mutations of critical SF residues. The transformed yeasts were then subjected to growth tests under low-K+ concentrations. A series of dilutions of the seeding yeast were plated on two parallel rows for cross-validation. The results confirm the structural observations, highlighting the essential roles of Ser88 and Val243 in HKT2;1, and Gly88 and Gly243 in HKT2;2/1 in determining ion selectivity. Experiments were repeated three times with representative results displayed.

Extended Data Table 1 Statistics for data collection and structural refinement

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Source data

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed SDS–PAGE gel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shen, X., Qu, Y. et al. Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters. Nat. Plants 10, 633–644 (2024). https://doi.org/10.1038/s41477-024-01665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01665-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing