Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Integrating the roles of long and small non-coding RNA in brain function and disease

Abstract

Regulatory RNA is emerging as the major architect of cognitive evolution and innovation in the mammalian brain. While the protein machinery has remained largely constant throughout animal evolution, the non protein-coding transcriptome has expanded considerably to provide essential and widespread cellular regulation, partly through directing generic protein function. Both long (long non-coding RNA) and small non-coding RNAs (for example, microRNA) have been demonstrated to be essential for brain development and higher cognitive abilities, and to be involved in psychiatric disease. Long non-coding RNAs, highly expressed in the brain and expanded in mammalian genomes, provide tissue- and activity-specific epigenetic and transcriptional regulation, partly through functional control of evolutionary conserved effector small RNA activity. However, increased cognitive sophistication has likely introduced concomitant psychiatric vulnerabilities, predisposing to conditions such as autism and schizophrenia, and cooperation between regulatory and effector RNAs may underlie neural complexity and concomitant fragility in the human brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  CAS  Google Scholar 

  2. Liu G, Mattick JS, Taft RJ . A meta—analysis of the genomic and transcriptomic composition of complex life. Cell Cycle 2013; 12: 2061–2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barry G, Mattick JS . The role of regulatory RNA in cognitive evolution. Trends Cogn Sci 2012; 16: 497–503.

    Article  PubMed  Google Scholar 

  4. Matera AG, Terns RM, Terns MP . Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 2007; 8: 209–220.

    Article  CAS  PubMed  Google Scholar 

  5. Parent JS, Martinez de Alba AE, Vaucheret H . The origin and effect of small RNA signaling in plants. Front Plant Sci 2012; 3: 179.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shabalina SA, Koonin EV . Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 2008; 23: 578–587.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008; 455: 1193–1197.

    Article  CAS  PubMed  Google Scholar 

  8. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K et al. Birth and expression evolution of mammalian microRNA genes. Genome Res 2013; 23: 34–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 2007; 129: 69–82.

    Article  CAS  PubMed  Google Scholar 

  11. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007; 128: 1089–1103.

    Article  CAS  PubMed  Google Scholar 

  12. Landry CD, Kandel ER, Rajasethupathy P . New mechanisms in memory storage: piRNAs and epigenetics. Trends Neurosci 2013; 36: 535–542.

    Article  CAS  PubMed  Google Scholar 

  13. Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS et al. Identification of piRNAs in the central nervous system. RNA 2011; 17: 1090–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 2012; 149: 693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skreka K, Schafferer S, Nat IR, Zywicki M, Salti A, Apostolova G et al. Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation. Nucleic Acids Res 2012; 40: 6001–6015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW . MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007; 8: R173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005; 308: 833–838.

    Article  CAS  PubMed  Google Scholar 

  18. De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB . miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 2008; 135: 3911–3921.

    Article  CAS  PubMed  Google Scholar 

  19. Cuellar TL, Davis TH, Nelson PT, Loeb GB, Harfe BD, Ullian E et al. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci USA 2008; 105: 5614–5619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 2007; 204: 1553–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 2008; 28: 4322–4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawase-Koga Y, Low R, Otaegi G, Pollock A, Deng H, Eisenhaber F et al. RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J Cell Sci 2010; 123: 586–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nowak JS, Michlewski G . miRNAs in development and pathogenesis of the nervous system. Biochem Soc Trans 2013; 41: 815–820.

    Article  CAS  PubMed  Google Scholar 

  24. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011; 476: 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun AX, Crabtree GR, Yoo AS . MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 2013; 25: 215–221.

    Article  CAS  PubMed  Google Scholar 

  26. Morabito MV, Abbas AI, Hood JL, Kesterson RA, Jacobs MM, Kump DS et al. Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader-Willi syndrome. Neurobiol Dis 2010; 39: 169–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kishore S, Stamm S . The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 2006; 311: 230–232.

    Article  CAS  PubMed  Google Scholar 

  28. Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 2010; 18: 1196–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eacker SM, Dawson TM, Dawson VL . The interplay of microRNA and neuronal activity in health and disease. Front Cell Neurosci 2013; 7: 136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 2010; 141: 618–631.

    Article  CAS  PubMed  Google Scholar 

  31. Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M et al. MicroRNA loss enhances learning and memory in mice. J Neurosci 2010; 30: 14835–14842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S . Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 2006; 124: 191–205.

    Article  CAS  PubMed  Google Scholar 

  33. Banerjee S, Neveu P, Kosik KS . A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 2009; 64: 871–884.

    Article  CAS  PubMed  Google Scholar 

  34. Im HI, Kenny PJ . MicroRNAs in neuronal function and dysfunction. Trends Neurosci 2012; 35: 325–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dharap A, Nakka VP, Vemuganti R . Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke 2011; 42: 1105–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogelj B, Hartmann CE, Yeo CH, Hunt SP, Giese KP . Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. Eur J Neurosci 2003; 18: 3089–3096.

    Article  PubMed  Google Scholar 

  37. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009; 137: 1235–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sellier C, Freyermuth F, Tabet R, Tran T, He F, Ruffenach F et al. Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep 2013; 3: 869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 2010; 107: 18161–18166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 2010; 5: 656–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan L, Yu JT, Hu N, Tan L . Non-coding RNAs in Alzheimer's disease. Mol Neurobiol 2013; 47: 382–393.

    Article  CAS  PubMed  Google Scholar 

  42. Abe M, Bonini NM . MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 2013; 23: 30–36.

    Article  CAS  PubMed  Google Scholar 

  43. Salta E, De Strooper B . Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 2012; 11: 189–200.

    Article  CAS  PubMed  Google Scholar 

  44. Beveridge NJ, Cairns MJ . MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012; 46: 263–271.

    Article  CAS  PubMed  Google Scholar 

  45. Mellios N, Sur M . The emerging role of microRNAs in schizophrenia and autism secptrum disorders. Front Psychiatry 2012; 3: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Dutta A, Abounader R . The role of microRNAs in glioma initiation and progression. Front Biosci (Landmark Ed) 2012; 17: 700–712.

    Article  CAS  Google Scholar 

  47. Zhi F, Wang S, Wang R, Xia X, Yang Y . From small to big: microRNAs as new players in medulloblastomas. Tumour Biol 2013; 34: 9–15.

    Article  CAS  PubMed  Google Scholar 

  48. Dykens EM, Lee E, Roof E . Prader-Willi syndrome and autism spectrum disorders: an evolving story. J Neurodev Disord 2011; 3: 225–237.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Williams GT, Farzaneh F . Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 2012; 12: 84–88.

    Article  CAS  PubMed  Google Scholar 

  50. van Zon A, Mossink MH, Scheper RJ, Sonneveld P, Wiemer EA . The vault complex. Cell Mol Life Sci 2003; 60: 1828–1837.

    Article  CAS  PubMed  Google Scholar 

  51. Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT et al. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 2013; 10: 1333–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 2013; 4: 255–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Minones-Moyano E, Friedlander MR, Pallares J, Kagerbauer B, Porta S, Escaramis G et al. Upregulation of a small vault RNA (svtRNA2-1a) is an early event in Parkinson disease and induces neuronal dysfunction. RNA Biol 2013; 10: 1093–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Young RS, Marques AC, Tibbit C, Haerty W, Bassett AR, Liu JL et al. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biol Evol 2012; 4: 427–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 2012; 22: 577–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang YC, Chen YQ . Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun 2013; 436: 111–114.

    Article  CAS  PubMed  Google Scholar 

  57. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477: 295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS . Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008; 105: 716–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li L, Liu B, Wapinski OL, Tsai MC, Qu K, Zhang J et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 2013; 5: 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R . Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 1997; 11: 156–166.

    Article  CAS  PubMed  Google Scholar 

  62. Eissmann M, Gutschner T, Hammerle M, Gunther S, Caudron-Herger M, Gross M et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 2012; 9: 1076–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakagawa S, Ip JY, Shioi G, Tripathi V, Zong X, Hirose T et al. Malat1 is not an essential component of nuclear speckles in mice. RNA 2012; 18: 1487–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010; 29: 3082–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 2013; 9: e1003368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 2013; 73: 1180–1189.

    Article  CAS  PubMed  Google Scholar 

  68. Lv J, Cui W, Liu H, He H, Xiu Y, Guo J et al. Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS ONE 2013; 8: e71152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ng SY, Johnson R, Stanton LW . Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 2012; 31: 522–533.

    Article  CAS  PubMed  Google Scholar 

  70. Qureshi IA, Mehler MF . Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 2012; 13: 528–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guttman M, Rinn JL . Modular regulatory principles of large non-coding RNAs. Nature 2012; 482: 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mercer TR, Mattick JS . Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20: 300–307.

    Article  CAS  PubMed  Google Scholar 

  73. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barry G, Briggs JA, Vanichkina DP, Poth EM, Beveridge NJ, Ratnu VS et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry advance online publication, 30 April 2013; doi:10.1038/mp.2013.45 (e-pub ahead of print).

    Article  PubMed  CAS  Google Scholar 

  75. Anko ML, Neugebauer KM . Long noncoding RNAs add another layer to pre-mRNA splicing regulation. Mol Cell 2010; 39: 833–834.

    Article  PubMed  CAS  Google Scholar 

  76. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S . The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 2007; 120: 2498–2506.

    Article  CAS  PubMed  Google Scholar 

  77. Gong C, Maquat LE . lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 2011; 470: 284–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson R . Long non-coding RNAs in Huntington's disease neurodegeneration. Neurobiol Dis 2012; 46: 245–254.

    Article  CAS  PubMed  Google Scholar 

  79. Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS ONE 2011; 6: e23356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nishimoto Y, Nakagawa S, Hirose T, Okano HJ, Takao M, Shibata S et al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 2013; 6: 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Petazzi P, Sandoval J, Szczesna K, Jorge OC, Roa L, Sayols S et al. Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. RNA Biol 2013; 10: 1197–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Talkowski ME, Maussion G, Crapper L, Rosenfeld JA, Blumenthal I, Hanscom C et al. Disruption of a large intergenic noncoding RNA in subjects with neurodevelopmental disabilities. Am J Hum Genet 2012; 91: 1128–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ziats MN, Rennert OM . Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci 2013; 49: 589–593.

    Article  CAS  PubMed  Google Scholar 

  84. Lipovich L, Dachet F, Cai J, Bagla S, Balan K, Jia H et al. Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 2012; 192: 1133–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S et al. LncRNA pro fi le of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 2012; 40: 2004–2012.

    CAS  PubMed  Google Scholar 

  86. Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO et al. Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis 2012; 48: 1–8.

    Article  PubMed  CAS  Google Scholar 

  87. Bellin M, Marchetto MC, Gage FH, Mummery CL . Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 2012; 13: 713–726.

    Article  CAS  PubMed  Google Scholar 

  88. Juan L, Wang G, Radovich M, Schneider BP, Clare SE, Wang Y et al. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genomics 2013; 6 ((Suppl 1)): S7.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Leucci E, Patella F, Waage J, Holmstrom K, Lindow M, Porse B et al MicroRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep 2013; 3: 2535.

    Article  PubMed  PubMed Central  Google Scholar 

  90. He S, Su H, Liu C, Skogerbo G, He H, He D et al. MicroRNA-encoding long non-coding RNAs. BMC Genomics 2008; 9: 236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cai X, Cullen BR . The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 2007; 13: 313–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 2012; 14: 659–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG et al. Long noncoding RNAs with snoRNA ends. Mol Cell 2012; 48: 219–230.

    Article  CAS  PubMed  Google Scholar 

  94. Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V . Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS ONE 2013; 8: e53823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 2013; 41: D239–D245.

    Article  CAS  PubMed  Google Scholar 

  96. Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 2010; 11: R56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 2013; 20: 440–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 2013; 25: 69–80.

    Article  CAS  PubMed  Google Scholar 

  99. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009; 106: 9362–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Manolio TA . Genomewide association studies and assessment of the risk of disease. N Engl J Med 2010; 363: 166–176.

    Article  CAS  PubMed  Google Scholar 

  101. Pasmant E, Sabbagh A, Vidaud M, Bieche I . ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 2011; 25: 444–448.

    Article  CAS  PubMed  Google Scholar 

  102. Mattick JS . The genetic signatures of noncoding RNAs. PLoS Genet 2009; 5: e1000459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS . Non-coding RNAs: regulators of disease. J Pathol 2010; 220: 126–139.

    Article  CAS  PubMed  Google Scholar 

  104. Qureshi IA, Mehler MF . Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 2013; 10: 632–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qureshi IA, Mattick JS, Mehler MF . Long non-coding RNAs in nervous system function and disease. Brain Res 2010; 1338: 20–35.

    Article  CAS  PubMed  Google Scholar 

  106. Wang W, Kwon EJ, Tsai LH . MicroRNAs in learning, memory, and neurological diseases. Learn Mem 2012; 19: 359–368.

    Article  CAS  PubMed  Google Scholar 

  107. Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci U S A 2012; 109: 3125–3130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N . Potential Impact of miR-137 and Its Targets in Schizophrenia. Front Genet 2013; 4: 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S et al. Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol Med 2013; 5: 1613–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wahlestedt C . Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 2013; 12: 433–446.

    Article  CAS  PubMed  Google Scholar 

  111. Ruberti F, Barbato C, Cogoni C . Targeting microRNAs in neurons: tools and perspectives. Exp Neurol 2012; 235: 419–426.

    Article  CAS  PubMed  Google Scholar 

  112. Martinez T, Wright N, Lopez-Fraga M, Jimenez AI, Paneda C . Silencing human genetic diseases with oligonucleotide-based therapies. Hum Genet 2013; 132: 481–493.

    Article  CAS  PubMed  Google Scholar 

  113. Kole R, Krainer AR, Altman S . RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11: 125–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Marcus ME, Leonard JN . FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver. Pharmaceuticals (Basel) 2013; 6: 659–680.

    Article  CAS  Google Scholar 

  115. El Andaloussi S, Lakhal S, Mager I, Wood MJ . Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65: 391–397.

    Article  CAS  PubMed  Google Scholar 

  116. Lee Y, El Andaloussi S, Wood MJ . Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21: R125–R134.

    Article  CAS  PubMed  Google Scholar 

  117. Zhou J, Shum KT, Burnett JC, Rossi JJ . Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges. Pharmaceuticals (Basel) 2013; 6: 85–107.

    Article  CAS  Google Scholar 

  118. Muthiah M, Park IK, Cho CS . Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv 2013; 10: 1259–1273.

    Article  CAS  PubMed  Google Scholar 

  119. O'Mahony AM, Godinho BM, Cryan JF, O'Driscoll CM . Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102: 3469–3484.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Professor John Mattick for critical insight and support. I also thank Dr Nicole Schonrock and Dominik Kaczorowski for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Barry.

Ethics declarations

Competing interests

The author declares no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, G. Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry 19, 410–416 (2014). https://doi.org/10.1038/mp.2013.196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.196

Keywords

This article is cited by

Search

Quick links