Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif

Abstract

The possibility that allogeneic T cells may be targeted to leukemia has important therapeutic implications. As most tumor antigens represent self-proteins, high-avidity tumor-specific T cells are largely deleted from the repertoire of the patient. In contrast, T cells from major histocompatibility complex (MHC)-mismatched donors provide naïve repertoires wherein such cells have not been systematically eliminated. Yet, evidence for peptide degeneracy or poly-specificity warrants caution in the use of foreign human leukocyte antigen (HLA) or peptide complexes as therapeutic targets. Here, we cocultured HLA-A*0201-negative T cells with autologous dendritic cells engineered to present HLA-A*0201 complexed with a peptide from the B cell antigen CD20 (CD20p). HLA-A*0201/CD20p pentamer-reactive CD8+ T cells were readily obtained from all donors. The polyclonal cells showed exquisite peptide and MHC specificity, and efficiently killed HLA-A*0201-positive B cells, including primary chronic lymphocytic leukemia cells. The T cell receptor (TCR) sequences displayed a novel type of conservation, with extensive homology in the TCR β chain complementarity-determining region 3 and in J, but not V, region. This is surprising, as the donors were HLA disparate and their TCR repertoires are expected to show little overlap. The results demonstrate the first public recognition motif for an allogeneic HLA/peptide complex. The allo-restricted T cells or TCRs could provide graft-versus-leukemia in the absence of graft-versus-host disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kolb HJ . Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 2008; 112: 4371–4383.

    Article  CAS  PubMed  Google Scholar 

  2. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  3. Gao L, Downs AM, Stauss HJ . Immunotherapy with CTL restricted by nonself MHC. Methods Mol Med 2005; 109: 215–228.

    CAS  PubMed  Google Scholar 

  4. Matzinger P, Bevan MJ . Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol 1977; 29: 1–5.

    Article  CAS  PubMed  Google Scholar 

  5. Housset D, Malissen B . What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity? Trends Immunol 2003; 24: 429–437.

    Article  CAS  PubMed  Google Scholar 

  6. Huseby ES, Crawford F, White J, Kappler J, Marrack P . Negative selection imparts peptide specificity to the mature T cell repertoire. Proc Natl Acad Sci USA 2003; 100: 11565–11570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huseby ES, White J, Crawford F, Vass T, Becker D, Pinilla C et al. How the T cell repertoire becomes peptide and MHC specific. Cell 2005; 122: 247–260.

    Article  CAS  PubMed  Google Scholar 

  8. Felix NJ, Donermeyer DL, Horvath S, Walters JJ, Gross ML, Suri A et al. Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol 2007; 8: 388–397.

    Article  CAS  PubMed  Google Scholar 

  9. Guimezanes A, Barrett-Wilt GA, Gulden-Thompson P, Shabanowitz J, Engelhard VH, Hunt DF et al. Identification of endogenous peptides recognized by in vivo or in vitro generated alloreactive cytotoxic T lymphocytes: distinct characteristics correlated with CD8 dependence. Eur J Immunol 2001; 31: 421–432.

    Article  CAS  PubMed  Google Scholar 

  10. Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C, Roussel A et al. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? EMBO J 2007; 26: 1972–1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2001; 2: 962–970.

    Article  CAS  PubMed  Google Scholar 

  12. Dutoit V, Guillaume P, Romero P, Cerottini JC, Valmori D . Functional analysis of HLA-A*0201/Melan-A peptide multimer+ CD8+ T cells isolated from an HLA-A*0201- donor: exploring tumor antigen allorestricted recognition. Cancer Immun 2002; 2: 7.

    PubMed  Google Scholar 

  13. Amrolia PJ, Reid SD, Gao L, Schultheis B, Dotti G, Brenner MK et al. Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood 2003; 101: 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  14. Pittet MJ, Gati A, Le Gal FA, Bioley G, Guillaume P, de Smedt M et al. Ex vivo characterization of allo-MHC-restricted T cells specific for a single MHC-peptide complex. J Immunol 2006; 176: 2330–2336.

    Article  CAS  PubMed  Google Scholar 

  15. Udaka K, Tsomides TJ, Eisen HN . A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell 1992; 69: 989–998.

    Article  CAS  PubMed  Google Scholar 

  16. Tallquist MD, Yun TJ, Pease LR . A single T cell receptor recognizes structurally distinct MHC/peptide complexes with high specificity. J Exp Med 1996; 184: 1017–1026.

    Article  CAS  PubMed  Google Scholar 

  17. Schuster IG, Busch DH, Eppinger E, Kremmer E, Milosevic S, Hennard C et al. Allorestricted T cells with specificity for the FMNL1-derived peptide PP2 have potent antitumor activity against hematologic and other malignancies. Blood 2007; 110: 2931–2939.

    Article  CAS  PubMed  Google Scholar 

  18. Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R, Nieuwkoop NJ et al. Design and use of conditional MHC class I ligands. Nat Med 2006; 12: 246–251.

    Article  CAS  PubMed  Google Scholar 

  19. Stronen E, Abrahamsen IW, Gaudernack G, Wälchli S, Munthe E, Buus S et al. Dendritic cells engineered to express defined allo-HLA peptide complexes induce antigen-specific cytotoxic T cells efficiently killing tumor cells. Scand J Immunol 2009; 69: 319–328.

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg WM, Moss PA, Bell JI . Variation in human T cell receptor V beta and J beta repertoire: analysis using anchor polymerase chain reaction. Eur J Immunol 1992; 22: 541–549.

    Article  CAS  PubMed  Google Scholar 

  21. Bae J, Martinson JA, Klingemann HG . Identification of CD19 and CD20 peptides for induction of antigen-specific CTLs against B-cell malignancies. Clin Cancer Res 2005; 11: 1629–1638.

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Roederer M . Differential susceptibility of leukocyte subsets to cytotoxic T cell killing: implications for HIV immunopathogenesis. Cytometry A 2007; 71: 94–104.

    Article  PubMed  Google Scholar 

  23. Turner SJ, Doherty PC, McCluskey J, Rossjohn J . Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 2006; 6: 883–894.

    Article  CAS  PubMed  Google Scholar 

  24. Gavin MA, Bevan MJ . Increased peptide promiscuity provides a rationale for the lack of N regions in the neonatal T cell repertoire. Immunity 1995; 3: 793–800.

    Article  CAS  PubMed  Google Scholar 

  25. Savage P, Gao L, Vento K, Cowburn P, Man S, Steven N et al. Use of B cell-bound HLA-A2 class I monomers to generate high-avidity, allo-restricted CTLs against the leukemia-associated protein Wilms tumor antigen. Blood 2004; 103: 4613–4615.

    Article  CAS  PubMed  Google Scholar 

  26. Whitelegg AM, Oosten LE, Jordan S, Kester M, van Halteren AG, Madrigal JA et al. Investigation of peptide involvement in T cell allorecognition using recombinant HLA class I multimers. J Immunol 2005; 175: 1706–1714.

    Article  CAS  PubMed  Google Scholar 

  27. Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA . Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 2009; 19: 1817–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Derre L, Bruyninx M, Baumgaertner P, Ferber M, Schmid D, Leimgruber A et al. Distinct sets of alphabeta TCRs confer similar recognition of tumor antigen NY-ESO-1157-165 by interacting with its central Met/Trp residues. Proc Natl Acad Sci USA 2008; 105: 15010–15015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Felix NJ, Allen PM . Specificity of T-cell alloreactivity. Nat Rev Immunol 2007; 7: 942–953.

    Article  CAS  PubMed  Google Scholar 

  30. Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer R, Garcia KC et al. Polyspecificity of T cell and B cell receptor recognition. Semin Immunol 2007; 19: 216–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wucherpfennig KW . T cell receptor crossreactivity as a general property of T cell recognition. Mol Immunol 2004; 40: 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson DB, Wilson DH, Schroder K, Pinilla C, Blondelle S, Houghten RA et al. Specificity and degeneracy of T cells. Mol Immunol 2004; 40: 1047–1055.

    Article  CAS  PubMed  Google Scholar 

  33. Dreger P, Corradini P, Kimby E, Michallet M, Milligan D, Schetelig J et al. Indications for allogeneic stem cell transplantation in chronic lymphocytic leukemia: the EBMT transplant consensus. Leukemia 2007; 21: 12–17.

    Article  CAS  PubMed  Google Scholar 

  34. de Bueger M, Bakker A, Van Rood JJ, Van der Woude F, Goulmy E . Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J Immunol 1992; 149: 1788–1794.

    CAS  PubMed  Google Scholar 

  35. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 2007; 110: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  36. Solal-Celigny P . Safety of rituximab maintenance therapy in follicular lymphomas. Leuk Res 2006; 30 (Suppl 1): S16–S21.

    Article  CAS  PubMed  Google Scholar 

  37. Schumacher TN . T-cell-receptor gene therapy. Nat Rev Immunol 2002; 2: 512–519.

    Article  CAS  PubMed  Google Scholar 

  38. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14: 1264–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heemskerk MH, Griffioen M, Falkenburg JH . T-cell receptor gene transfer for treatment of leukemia. Cytotherapy 2008; 10: 108–115.

    Article  CAS  PubMed  Google Scholar 

  41. Bonavida B . Rituximab-induced inhibition of antiapoptotic cell survival pathways: implications in chemo/immunoresistance, rituximab unresponsiveness, prognostic and novel therapeutic interventions. Oncogene 2007; 26: 3629–3636.

    Article  CAS  PubMed  Google Scholar 

  42. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003; 21: 1466–1471.

    Article  CAS  PubMed  Google Scholar 

  43. Kater AP, van Oers MH, Kipps TJ . Cellular immune therapy for chronic lymphocytic leukemia. Blood 2007; 110: 2811–2818.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Grøseth and Moen Stjern families for inspiration and funding, to R Fet, H Fjerdingstad, G Flatberg, K Marshal and AK Tveter for exemplary technical assistance, to MA Cheever, H Solberg and LM Sollid for critical reading of the manuscript, and to E Thorsby for valuable support. This study was financed by the University of Oslo (ES, IWA), The Norwegian Research Council (JO, SK), Medinnova (JO, ES, IWA), Oslo University Hospital (JO), Health Region South-East (SW) and ØA stiftelsen (JO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Olweus.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrahamsen, I., Stronen, E., Wälchli, S. et al. Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif. Leukemia 24, 1901–1909 (2010). https://doi.org/10.1038/leu.2010.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.186

Keywords

This article is cited by

Search

Quick links