Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lentiviral-mediated Foxp3 RNAi suppresses tumor growth of regulatory T cell-like leukemia in a murine tumor model

Abstract

Foxp3, a member of the forkhead transcription factor family, is a master gene that controls the development and function of CD4+CD25+ regulatory T (Treg) cells. It is thought to contribute to pathogenesis of many different tumors, including ovarian carcinoma and pancreatic, breast and pancreatic ductal adenocarcinoma. Selectively depleted Foxp3-expressing cells with anit-CD25 antibodies or vaccination of Foxp3 mRNA-transfected dendritic cells engender protective immunity against tumor. This study targeted silencing Foxp3 gene expression using RNA interference (RNAi) delivered by a lentiviral vector to evaluate the therapeutic role of Foxp3 short-hairpin RNAs (shRNAs) in a murine model of leukemia. RL♂1, a mouse CD4+CD25+ leukemia cell with Foxp3 expression, was used as the leukemia animal model. By infecting RL♂1 cells with Lenti-Foxp3-siRNA, we reduced Foxp3 gene expression and the suppressive function of CD4+CD25 effector cells stimulated with ConA. Moreover, lentiviral-mediated Foxp3 RNAi transduced into RL♂1 cell or injected into the tumor showed suppressive effects on tumor growth and prolonged the survival of tumor-transplanted mice. However, this suppressive effect was abrogated in NOD-SCID mice transplanted with Lenti-Foxp3-siRNA-infected RL♂1 cells. In conclusion, inhibiting Foxp3 gene expression by shRNAs effectively decreases tumor growth of Treg cell-like leukemia. The results may provide a novel strategy for future immunotherapy against cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kersey JH . Fifty years of studies of the biology and therapy of childhood leukemia. Blood 1997; 90: 4243–4251.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hahn WC, Weinberg RA . Rules for making human tumor cells. N Engl J Med 2002; 347: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  4. Smith SD, Uyeki EM, Lowman JT . Colony formation in vitro by leukemic cells in acute lymphoblastic leukemia (ALL). Blood 1978; 52: 712–718.

    CAS  PubMed  Google Scholar 

  5. Smith SD, Shatsky M, Cohen PS, Warnke R, Link MP, Glader BE . Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 1984; 44 (12 Pt 1): 5657–5660.

    CAS  PubMed  Google Scholar 

  6. Lange B, Valtieri M, Santoli D, Caracciolo D, Mavilio F, Gemperlein I et al. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 1987; 70: 192–199.

    CAS  PubMed  Google Scholar 

  7. Gjerset R, Yu A, Haas M . Establishment of continuous cultures of T-cell acute lymphoblastic leukemia cells at diagnosis. Cancer Res 1990; 50: 10–14.

    CAS  PubMed  Google Scholar 

  8. Dialynas DP, Lee MJ, Gold DP, Shao Le, Yu AL, Borowitz MJ et al. Pre-conditioning with fetal cord blood facilitates engraftment of primary childhood T-cell acute lymphoblastic leukemia in immuno-deficient mice. Blood 2001; 97: 3218–3225.

    Article  CAS  PubMed  Google Scholar 

  9. Burnet FM . The concept of immunologic surveillance. Prog Exp Tumor Res 1970; 13: 1–27.

    Article  CAS  PubMed  Google Scholar 

  10. Smyth MJ, Dunn GP, Schreiber RD . Cancer immuno-surveillance and immuno-editing: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006; 90: 1–50.

    Article  CAS  PubMed  Google Scholar 

  11. Bui JD, Schreiber RD . Cancer immuno-surveillance, immuno-editing and inflammation: independent or interdependent processes? Curr Opin Immunol 2007; 19: 203–208.

    Article  CAS  PubMed  Google Scholar 

  12. Sakaguchi S . Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–352.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Zheng J, Liu J, Yao J, He Y, Li X et al. Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol 2005; 75: 468–476.

    Article  PubMed  Google Scholar 

  14. Nelson BH . IL-2, regulatory T cells, and tolerance. J Immunol 2004; 172: 3983–3988.

    Article  CAS  PubMed  Google Scholar 

  15. Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A . Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 2007; 92: 881–888.

    Article  CAS  PubMed  Google Scholar 

  16. Fontenot JD, Rudensky AY . A well-adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005; 6: 331–337.

    Article  CAS  PubMed  Google Scholar 

  17. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 2007; 27: 786–800.

    Article  CAS  PubMed  Google Scholar 

  18. Nik Tavakoli N, Hambly BD, Sullivan DR, Bao S . Forkhead box protein 3: essential immune regulatory role. Int J Biochem Cell Biol 2008; 40: 2369–2373.

    Article  PubMed  Google Scholar 

  19. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761.

    Article  CAS  PubMed  Google Scholar 

  20. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  21. Hiraoka N, Onozato K, Kosuge T, Hirohashi S . Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its pre-malignant lesions. Clin Cancer Res 2006; 12: 5423–5434.

    Article  CAS  PubMed  Google Scholar 

  22. Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007; 121: 95–105.

    Article  CAS  PubMed  Google Scholar 

  23. Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 2007; 67: 8344–8350.

    Article  CAS  PubMed  Google Scholar 

  24. Roncador G, Garcia JF, Garcia JF, Maestre L, Lucas E, Menarguez J et al. FOXP3, a selective marker for a subset of adult T-cell leukemia/lymphoma. Leukemia 2005; 19: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  25. Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu LC et al. Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol 2006; 18: 269–277.

    Article  CAS  PubMed  Google Scholar 

  26. Yano H, Ishida T, Inagaki A, Ishii T, Kusumoto S, Komatsu H et al. Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer 2007; 120: 2052–2057.

    Article  CAS  PubMed  Google Scholar 

  27. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007; 446: 685–689.

    Article  CAS  PubMed  Google Scholar 

  28. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ . CD4(+)CD25(+)Foxp3(+) regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4(+) T cells. Nat Immunol 2007; 8: 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  29. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E . Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 2007; 67: 371–380.

    Article  CAS  PubMed  Google Scholar 

  30. Sato H, Boyse EA, Aoki T, Iritani C, Old LJ . Leukemia-associated transplantation antigens related to murine leukemia virus. The X.1 system: immune response controlled by a locus linked to H-2. J Exp Med 1973; 138: 593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iwakuma T, Cui Y, Chang LJ . Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 1999; 261: 120–132.

    Article  CAS  PubMed  Google Scholar 

  32. Roush W . Anti-sense aims for a renaissance. Science 1997; 276: 1192–1193.

    Article  CAS  PubMed  Google Scholar 

  33. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    Article  CAS  PubMed  Google Scholar 

  34. Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640–1647.

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126: 375–387.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007; 445: 936–940.

    Article  CAS  PubMed  Google Scholar 

  37. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ . CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007; 8: 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  38. Alisky JM, Davidson BL . Towards therapy using RNA interference. Am J Pharmacogenomics 2004; 4: 45–51.

    Article  CAS  PubMed  Google Scholar 

  39. Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P . Lentiviral-mediated RNA interference. Hum Gene Ther 2002; 13: 2197–2201.

    Article  CAS  PubMed  Google Scholar 

  40. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  41. Heller LC, Ingram SF, Lucas ML, Gilbert RA, Heller R . Effect of electrically mediated intratumor and intramuscular delivery of a plasmid encoding IFN alpha on visible B16 mouse melanomas. Technol Cancer Res Treat 2002; 1: 205–209.

    Article  CAS  PubMed  Google Scholar 

  42. Tomar RS, Matta H, Chaudhary PM . Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 2003; 22: 5712–5715.

    Article  CAS  PubMed  Google Scholar 

  43. Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol 2007; 8: 931–941.

    Article  CAS  PubMed  Google Scholar 

  44. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  PubMed  Google Scholar 

  45. Persengiev SP, Zhu X, Green MR . Non-specific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004; 10: 12–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tomayko MM, Reynolds CP . Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989; 24: 148–154.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B-L Chiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, BY., Suen, JL. & Chiang, BL. Lentiviral-mediated Foxp3 RNAi suppresses tumor growth of regulatory T cell-like leukemia in a murine tumor model. Gene Ther 17, 972–979 (2010). https://doi.org/10.1038/gt.2010.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.38

Keywords

This article is cited by

Search

Quick links