Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low doses of IFN-γ maintain self-renewal of leukemia stem cells in acute myeloid leukemia

Abstract

Conventional therapies for acute myeloid leukemia (AML) often fail to eliminate the disease-initiating leukemia stem cell (LSC) population, leading to disease relapse. Interferon-γ (IFN-γ) is a known inflammatory cytokine that promotes antitumor responses. Here, we found that low serum IFN-γ levels correlated with a higher percentage of LSCs and greater relapse incidence in AML patients. Furthermore, IFNGR1 was overexpressed in relapsed patients with AML and associated with a poor prognosis. We showed that high doses (5–10 μg/day) of IFN-γ exerted an anti-AML effect, while low doses (0.01–0.05 μg/day) of IFN-γ accelerated AML development and supported LSC self-renewal in patient-derived AML-LSCs and in an LSC-enriched MLL-AF9-driven mouse model. Importantly, targeting the IFN-γ receptor IFNGR1 by using lentiviral shRNAs or neutralizing antibodies induced AML differentiation and delayed leukemogenesis in vitro and in mice. Overall, we uncovered essential roles for IFN-γ and IFNGR1 in AML stemness and showed that targeting IFNGR1 is a strategy to decrease stemness and increase differentiation in relapsed AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low levels of IFN-γ and high levels of IFNGR1 are associated with a high percentage of LSCs and poor prognosis in AML patients.
Fig. 2: IFN-γ delays AML progression at high doses but promotes AML development at low doses in mice.
Fig. 3: Low doses of IFN-γ promote AML stemness in vitro.
Fig. 4: Low doses of IFN-γ promote AML development and maintenance in mice.
Fig. 5: Activation of the PI3K–AKT and PPARγ pathways contributes to the effect of low-dose IFN-γ on LSCs in AML.
Fig. 6: Targeting IFNGR1 by shRNA induces AML stem cell differentiation and delays AML progression.
Fig. 7: Neutralization of IFNGR1 by antibody reduces AML stem cell properties and prevents AML progression induced by low doses of IFN-γ in mice.

Similar content being viewed by others

Data availability

The raw data of RNA sequencing were deposited at National Center for Biotechnology Information (NCBI) under BioProject nos. PRJNA992770 and PRJNA757222. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

References

  1. van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia S, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell. 2019;176:1265–81 e24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhatt S, Pioso MS, Olesinski EA, Yilma B, Ryan JA, Mashaka T, et al. Reduced Mitochondrial Apoptotic Priming Drives Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Cell. 2020;38:872–90 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park SM, Cho H, Thornton AM, Barlowe TS, Chou T, Chhangawala S, et al. IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell. 2019;24:153–65 e7.

    Article  CAS  PubMed  Google Scholar 

  5. Piya S, Mu H, Bhattacharya S, Lorenzi PL, Davis RE, McQueen T, et al. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment. J Clin Investig. 2019;129:1878–94.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hein N, Cameron DP, Hannan KM, Nguyen NN, Fong CY, Sornkom J, et al. Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood. 2017;129:2882–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burke JD, Young HA. IFN-gamma: A cytokine at the right time, is in the right place. Semin Immunol. 2019;43:101280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol. 2018;9:847.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fatehchand K, McMichael EL, Reader BF, Fang H, Santhanam R, Gautam S, et al. Interferon-gamma Promotes Antibody-mediated Fratricide of Acute Myeloid Leukemia Cells. J Biol Chem. 2016;291:25656–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ivashkiv LB. IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18:545–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartsch HH, Pfizenmaier K, Hanusch A, Scheurich P, Ucer U, Nagel GA. Sequential therapy with recombinant interferons gamma and alpha in patients with unfavorable prognosis of chronic myelocytic leukemia: clinical responsiveness to recombinant IFN-alpha correlates with the degree of receptor down-regulation. Int J Cancer. 1989;43:235–40.

    Article  CAS  PubMed  Google Scholar 

  12. Thiele J, Zirbes TK, Kvasnicka HM, Lorenzen J, Niederle N, Leder LD, et al. Effect of interferon therapy on bone marrow morphology in chronic myeloid leukemia: a cytochemical and immunohistochemical study of trephine biopsies. J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res. 1996;16:217–24.

    Article  CAS  Google Scholar 

  13. Stone RM, Spriggs DR, Arthur KA, Mayer RJ, Griffin J, Kufe DW. Recombinant human gamma interferon administered by continuous intravenous infusion in acute myelogenous leukemia and myelodysplastic syndromes. Am J Clin Oncol. 1993;16:159–63.

    Article  CAS  PubMed  Google Scholar 

  14. Beatty GL, Paterson Y. IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol. 2000;165:5502–8.

    Article  CAS  PubMed  Google Scholar 

  15. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-gamma in tumor progression and regression: a review. Biomarker Res. 2020;8:49.

    Article  Google Scholar 

  16. Zaidi MR. The Interferon-Gamma Paradox in Cancer. J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res. 2019;39:30–8.

    Article  CAS  Google Scholar 

  17. Zaidi MR, Merlino G. The two faces of interferon-gamma in cancer. Clinical Cancer Res: Official J Am Assoc Cancer Res. 2011;17:6118–24.

    Article  CAS  Google Scholar 

  18. Zaidi MR, Davis S, Noonan FP, Graff-Cherry C, Hawley TS, Walker RL, et al. Interferon-gamma links ultraviolet radiation to melanomagenesis in mice. Nature. 2011;469:548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu B, Zhong W, Cao X, Pan G, Xu M, Zheng J, et al. Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice. Sci Transl Med. 2022;14:eabh2548.

    Article  CAS  PubMed  Google Scholar 

  20. Singh S, Kumar S, Srivastava RK, Nandi A, Thacker G, Murali H, et al. Loss of ELF5-FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-gamma signalling. Nat Cell Biol. 2020;22:591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–22.

    Article  CAS  PubMed  Google Scholar 

  22. Sheng Y, Yu C, Liu Y, Hu C, Ma R, Lu X, et al. FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun. 2020;11:928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goyama S, Shrestha M, Schibler J, Rosenfeldt L, Miller W, O’Brien E, et al. Protease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemia. Oncogene. 2017;36:2589–98.

    Article  CAS  PubMed  Google Scholar 

  25. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10:257–68.

    Article  CAS  PubMed  Google Scholar 

  26. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y, et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell. 2012;21:473–87.

    Article  CAS  PubMed  Google Scholar 

  27. Boutzen H, Madani Tonekaboni SA, Chan-Seng-Yue M, Murison A, Takayama N, Mbong N, et al. A primary hierarchically organized patient-derived model enables in depth interrogation of stemness driven by the coding and non-coding genome. Leukemia. 2022;36:2690–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017;7:716–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao Y, Yang J, Cai Y, Fu S, Zhang N, Fu X, et al. IFN-gamma-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer. 2018;143:931–43.

    Article  CAS  PubMed  Google Scholar 

  30. Yokota A, Hirai H, Sato R, Adachi H, Sato F, Hayashi Y, et al. C/EBPbeta is a critical mediator of IFN-alpha-induced exhaustion of chronic myeloid leukemia stem cells. Blood Adv. 2019;3:476–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kovacic B, Stoiber D, Moriggl R, Weisz E, Ott RG, Kreibich R, et al. STAT1 acts as a tumor promoter for leukemia development. Cancer Cell. 2006;10:77–87.

    Article  CAS  PubMed  Google Scholar 

  32. Quotti Tubi L, Canovas Nunes S, Brancalion A, Doriguzzi Breatta E, Manni S, Mandato E, et al. Protein kinase CK2 regulates AKT, NF-kappaB and STAT3 activation, stem cell viability and proliferation in acute myeloid leukemia. Leukemia. 2017;31:292–300.

    Article  CAS  PubMed  Google Scholar 

  33. Guo B, Huang X, Lee MR, Lee SA, Broxmeyer HE. Antagonism of PPAR-gamma signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med. 2018;24:360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARgamma agonists. Nature. 2015;525:380–3.

    Article  CAS  PubMed  Google Scholar 

  35. Kortylewski M, Komyod W, Kauffmann ME, Bosserhoff A, Heinrich PC, Behrmann I. Interferon-gamma-mediated growth regulation of melanoma cells: involvement of STAT1-dependent and STAT1-independent signals. J Invest Dermatol. 2004;122:414–22.

    Article  CAS  PubMed  Google Scholar 

  36. Bahram F, Hydbring P, Tronnersjo S, Zakaria SM, Frings O, Fahlen S, et al. Interferon-gamma-induced p27KIP1 binds to and targets MYC for proteasome-mediated degradation. Oncotarget. 2016;7:2837–54.

    Article  PubMed  Google Scholar 

  37. Burke F, Smith PD, Crompton MR, Upton C, Balkwill FR. Cytotoxic response of ovarian cancer cell lines to IFN-gamma is associated with sustained induction of IRF-1 and p21 mRNA. Br J Cancer. 1999;80:1236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kominsky S, Johnson HM, Bryan G, Tanabe T, Hobeika AC, Subramaniam PS, et al. IFNgamma inhibition of cell growth in glioblastomas correlates with increased levels of the cyclin dependent kinase inhibitor p21WAF1/CIP1. Oncogene. 1998;17:2973–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ruiz-Ruiz C, Ruiz de Almodovar C, Rodriguez A, Ortiz-Ferron G, Redondo JM, Lopez-Rivas A. The up-regulation of human caspase-8 by interferon-gamma in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1. J Biol Chem. 2004;279:19712–20.

    Article  CAS  PubMed  Google Scholar 

  40. Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S. Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut. 2001;49:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Balachandran S, Adams GP. Interferon-gamma-induced necrosis: an antitumor biotherapeutic perspective. J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res. 2013;33:171–80.

    Article  CAS  Google Scholar 

  42. Miller CH, Maher SG, Young HA. Clinical Use of Interferon-gamma. Ann N Y Acad Sci. 2009;1182:69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kursunel MA, Esendagli G. The untold story of IFN-gamma in cancer biology. Cytokine Growth Factor Rev. 2016;31:73–81.

    Article  PubMed  Google Scholar 

  44. Chen X, Burkhardt DB, Hartman AA, Hu X, Eastman AE, Sun C, et al. MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nat Commun. 2019;10:5767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our patient volunteers for participation in the study. We would like to thank Professor Tao Cheng (Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin) for providing MLL-AF9 murine cells.

Funding

This work was supported by the National Natural Science Foundation of China (82100155, 81991511, 81991510), and the China Postdoctoral Science Foundation (2022M720060).

Author information

Authors and Affiliations

Authors

Contributions

XLX, XCB, and YHL conceived the project, guided the research, and wrote the paper; XLX, WJZ, HW, YXH, BYX, and YQQ performed the experiments and analyzed the data; XZ, BYX, and YHL provided primary leukemia patient samples; XLX, WJZ, ZXY, BG, HHZ, and LH performed mouse experiments and collected the data.

Corresponding authors

Correspondence to Xiaoling Xie, Yuhua Li or Xiaochun Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Zhang, W., Zhou, X. et al. Low doses of IFN-γ maintain self-renewal of leukemia stem cells in acute myeloid leukemia. Oncogene 42, 3657–3669 (2023). https://doi.org/10.1038/s41388-023-02874-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02874-5

Search

Quick links