Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The peptide-binding motif of HLA-DR8 shares important structural features with other type 1 diabetes-associated alleles

Abstract

The objective of this study was to characterize the peptide-binding motif of the major histocompatibility complex (MHC) class II HLA-DR8 molecule included in the type 1 diabetes-associated haplotype DRB1*0801-DQA1*0401/DQB1*0402 (DR8-DQ4), and compare it with that of other diabetes-associated MHC class II alleles; DR8-bound peptides were eluted from an HLA-DR homozygous lymphoblastoid cell line. The repertoire was characterized by peptide sequencing using a LTQ ion trap mass spectrometer coupled to a multidimensional liquid chromatography system. After validation of the spectra identification, the definition of the HLA-DR8 peptide-binding motif was achieved from the analysis of 486 natural ligands, based on serial alignments of all possible HLA-DR-binding cores. The DR8 motif showed a strong similarity with the peptide-binding motifs of other MHC class II diabetes-associated alleles, HLA-DQ8 and H-2 I-Ag7. Similar to HLA-DQ8 and H-2 I-Ag7, HLA-DR8 preferentially binds peptides with an acidic residue at position P9 of the binding core, indicating that DR8 is the susceptibility component of the DR8-DQ4 haplotype. Indeed, some DR8 peptides were identical to peptides previously identified as DQ8- or I-Ag7 ligands, and several diabetes-specific peptides associated with DQ8 or I-Ag7 could theoretically bind to HLA-DR8. These data further strengthen the association of HLA-DR8 with type I diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bondinas GP, Moustakas AK, Papadopoulos GK . The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics 2007; 59: 539–553.

    Article  CAS  Google Scholar 

  2. Rammensee HG, Friede T, Stevanoviic S . MHC ligands and peptide motifs: first listing. Immunogenetics 1995; 41: 178–228.

    Article  CAS  Google Scholar 

  3. Runstadler JA, Saila H, Savolainen A, Leirisalo-Repo M, Aho K, Tuomilehto-Wolf E et al. Analysis of MHC region genetics in Finnish patients with juvenile idiopathic arthritis: evidence for different locus-specific effects in polyarticular vs pauciarticular subsets and a shared DRB1 epitope. Genes Immun 2003; 4: 326–335.

    Article  CAS  Google Scholar 

  4. Mullarkey ME, Stevens AM, McDonnell WM, Loubiere LS, Brackensick JA, Pang JM et al. Human leukocyte antigen class II alleles in Caucasian women with primary biliary cirrhosis. Tissue Antigens 2005; 65: 199–205.

    Article  CAS  Google Scholar 

  5. Donaldson PT, Baragiotta A, Heneghan MA, Floreani A, Venturi C, Underhill JA et al. HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology 2006; 44: 667–674.

    Article  CAS  Google Scholar 

  6. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 2008; 57: 1084–1092.

    Article  CAS  Google Scholar 

  7. Wong FS, Janeway Jr CA . Insulin-dependent diabetes mellitus and its animal models. Curr Opin Immunol 1999; 11: 643–647.

    Article  CAS  Google Scholar 

  8. Castano L, Eisenbarth GS . Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol 1990; 8: 647–679.

    Article  CAS  Google Scholar 

  9. Acha-Orbea H, McDevitt HO . The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proc Natl Acad Sci USA 1987; 84: 2435–2439.

    Article  CAS  Google Scholar 

  10. Suri A, Vidavsky I, van der Drift K, Kanagawa O, Gross ML, Unanue ER . In APCs, the autologous peptides selected by the diabetogenic I-Ag7 molecule are unique and determined by the amino acid changes in the P9 pocket. J Immunol 2002; 168: 1235–1243.

    Article  CAS  Google Scholar 

  11. Suri A, Unanue ER . The murine diabetogenic class II histocompatibility molecule I-A(g7): structural and functional properties and specificity of peptide selection. Adv Immunol 2005; 88: 235–265.

    Article  CAS  Google Scholar 

  12. Suri A, Walters JJ, Gross ML, Unanue ER . Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest 2005; 115: 2268–2276.

    Article  CAS  Google Scholar 

  13. Kwok WW, Domeier ME, Johnson ML, Nepom GT, Koelle DM . HLA-DQB1 codon 57 is critical for peptide binding and recognition. J Exp Med 1996; 183: 1253–1258.

    Article  CAS  Google Scholar 

  14. Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M . Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci USA 1988; 85: 8111–8115.

    Article  CAS  Google Scholar 

  15. Todd JA, Bell JI, McDevitt HO . HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604.

    Article  CAS  Google Scholar 

  16. Latek RR, Suri A, Petzold SJ, Nelson CA, Kanagawa O, Unanue ER et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 2000; 12: 699–710.

    Article  CAS  Google Scholar 

  17. Lee KH, Wucherpfennig KW, Wiley DC . Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001; 2: 501–507.

    Article  CAS  Google Scholar 

  18. Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM . Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA 2004; 101: 4175–4179.

    Article  CAS  Google Scholar 

  19. Stepniak D, Wiesner M, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK et al. Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. J Immunol 2008; 180: 3268–3278.

    Article  CAS  Google Scholar 

  20. Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL . Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 1993; 178: 27–47.

    Article  CAS  Google Scholar 

  21. Carrascal M, Ovelleiro D, Casas V, Gay M, Abian J . Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment. J Proteome Res 2008; 7: 5167–5176.

    Article  CAS  Google Scholar 

  22. Elias JE, Haas W, Faherty BK, Gygi SP . Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2005; 2: 667–675.

    Article  CAS  Google Scholar 

  23. Elias JE, Gygi SP . Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007; 4: 207–214.

    Article  CAS  Google Scholar 

  24. Chicz RM, Urban RG, Lane WS, Gorga JC, Stern LJ, Vignali DA et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 1992; 358: 764–768.

    Article  CAS  Google Scholar 

  25. Alvarez I, Collado J, Daura X, Colome N, Rodriguez-Garcia M, Gallart T et al. The rheumatoid arthritis-associated allele HLA-DR10 (DRB1*1001) shares part of its repertoire with HLA-DR1 (DRB1*0101) and HLA-DR4 (DRB*0401). Arthritis Rheum 2008; 58: 1630–1639.

    Article  CAS  Google Scholar 

  26. Muntasell A, Carrascal M, Serradell L, Veelen Pv P, Verreck F, Koning F et al. HLA-DR4 molecules in neuroendocrine epithelial cells associate to a heterogeneous repertoire of cytoplasmic and surface self peptides. J Immunol 2002; 169: 5052–5060.

    Article  Google Scholar 

  27. Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 1999; 17: 555–561.

    Article  CAS  Google Scholar 

  28. Hammer J . New methods to predict MHC-binding sequences within protein antigens. Curr Opin Immunol 1995; 7: 263–269.

    Article  CAS  Google Scholar 

  29. Volz T, Schwarz G, Fleckenstein B, Schepp CP, Haug M, Roth J et al. Determination of the peptide binding motif and high-affinity ligands for HLA-DQ4 using synthetic peptide libraries. Hum Immunol 2004; 65: 594–601.

    Article  CAS  Google Scholar 

  30. Calvo-Calle JM, Hammer J, Sinigaglia F, Clavijo P, Moya-Castro ZR, Nardin EH . Binding of malaria T cell epitopes to DR and DQ molecules in vitro correlates with immunogenicity in vivo: identification of a universal T cell epitope in the Plasmodium falciparum circumsporozoite protein. J Immunol 1997; 159: 1362–1373.

    CAS  PubMed  Google Scholar 

  31. Gautier N, Chavant E, Prieur E, Monsarrat B, Mazarguil H, Davrinche C et al. Characterization of an epitope of the human cytomegalovirus protein IE1 recognized by a CD4+ T cell clone. Eur J Immunol 1996; 26: 1110–1117.

    Article  CAS  Google Scholar 

  32. Chang KY, Suri A, Unanue ER . Predicting peptides bound to I-Ag7 class II histocompatibility molecules using a novel expectation-maximization alignment algorithm. Proteomics 2007; 7: 367–377.

    Article  CAS  Google Scholar 

  33. Kwok WW, Domeier ML, Raymond FC, Byers P, Nepom GT . Allele-specific motifs characterize HLA-DQ interactions with a diabetes-associated peptide derived from glutamic acid decarboxylase. J Immunol 1996; 156: 2171–2177.

    CAS  PubMed  Google Scholar 

  34. Redondo MJ, Eisenbarth GS . Genetic control of autoimmunity in type I diabetes and associated disorders. Diabetologia 2002; 45: 605–622.

    Article  CAS  Google Scholar 

  35. Scott CA, Peterson PA, Teyton L, Wilson IA . Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity 1998; 8: 319–329.

    Article  CAS  Google Scholar 

  36. Baker FJ, Lee M, Chien YH, Davis MM . Restricted islet-cell reactive T cell repertoire of early pancreatic islet infiltrates in NOD mice. Proc Natl Acad Sci USA 2002; 99: 9374–9379.

    Article  CAS  Google Scholar 

  37. De la Fuente MA, Egile C, Pereira A, Juan M, Vivanco F, Roelcke D et al. Characterization of a monoclonal IgMK (IgMGAS) anti-Gd cold agglutinin (CA). Its coexistence with a monoclonal IgG3K (IgGGAS) without CA activity that might be clonally related to IgMGAS. Blood 1994; 83: 1310–1322.

    CAS  PubMed  Google Scholar 

  38. Alvarez I, Marti M, Vazquez J, Camafeita E, Ogueta S, Lopez de Castro JA . The Cys-67 residue of HLA-B27 influences cell surface stability, peptide specificity, and T-cell antigen presentation. J Biol Chem 2001; 276: 48740–48747.

    Article  CAS  Google Scholar 

  39. Muixi L, Carrascal M, Alvarez I, Daura X, Marti M, Armengol MP et al. Thyroglobulin peptides associate in vivo to HLA-DR in autoimmune thyroid glands. J Immunol 2008; 181: 795–807.

    Article  CAS  Google Scholar 

  40. Lopez de Castro JA, Alvarez I, Marcilla M, Paradela A, Ramos M, Sesma L et al. HLA-B27: a registry of constitutive peptide ligands. Tissue Antigens 2004; 63: 424–445.

    Article  CAS  Google Scholar 

  41. Kelley LA, Sternberg MJ . Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009; 4: 363–371.

    Article  CAS  Google Scholar 

  42. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 2006; 15: 5.6.1–5.6.30.

    Article  Google Scholar 

  43. Guerois R, Nielsen JE, Serrano L . Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002; 320: 369–387.

    Article  CAS  Google Scholar 

  44. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L . The FoldX web server: an online force field. Nucleic Acids Res 2005; 33 (Web Server issue): W382–W388.

    Article  CAS  Google Scholar 

  45. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L . Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci USA 2005; 102: 10147–10152.

    Article  CAS  Google Scholar 

  46. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26: 1781–1802.

    Article  CAS  Google Scholar 

  47. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al. UCSF chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605–1612.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Ministry of Education grant SAF2006-08928 to DJ. We thank JL Vicario from the Transfusion Center (Madrid) for sending us the sample from a DR8 homozygous blood donor, and the donor for accepting to donate for research purposes. PMM acknowledges funding from the Spanish MICINN/FEDER BIO2007-62954. The CSIC/UAB Proteomics Laboratory is a member of ProteoRed, funded by Genoma Spain and follows the quality criteria set up by the ProteoRed standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Jaraquemada.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muixí, L., Gay, M., Muñoz-Torres, P. et al. The peptide-binding motif of HLA-DR8 shares important structural features with other type 1 diabetes-associated alleles. Genes Immun 12, 504–512 (2011). https://doi.org/10.1038/gene.2011.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.26

Keywords

This article is cited by

Search

Quick links