Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex

Abstract

Inhibitor of apoptosis (IAP) proteins represent promising therapeutic targets due to their high expression in many cancers. Here, we report that small-molecule IAP inhibitors at subtoxic concentrations cooperate with monoclonal antibodies against TRAIL receptor 1 (Mapatumumab) or TRAIL-R2 (Lexatumumab) to induce apoptosis in neuroblastoma cells in a highly synergistic manner (combination index <0.1). Importantly, we identify receptor-activating protein 1 (RIP1) as a critical mediator of this synergism. RIP1 is required for the formation of a RIP1/FADD/caspase-8 complex that drives caspase-8 activation, cleavage of Bid into tBid, mitochondrial outer membrane permeabilization, full activation of caspase-3 and caspase-dependent apoptosis. Indeed, knockdown of RIP1 abolishes formation of the RIP1/FADD/caspase-8 complex, caspase activation and apoptosis upon combination treatment. Similarly, inhibition of RIP1 kinase activity by Necrostatin-1 inhibits IAP inhibitor- and TRAIL receptor-triggered apoptosis. In contrast, overexpression of the dominant-negative superrepressor IκBα-SR or addition of the tumor necrosis factor (TNF)α-blocking antibody Enbrel do not interfere with cotreatment-induced apoptosis, pointing to a nuclear factor-κB- and TNFα-independent mechanism. Of note, IAP inhibitor also sensitizes primary cultured neuroblastoma cells for TRAIL receptor-mediated loss of viability, underscoring the clinical relevance. By identifying RIP1 as a critical mediator of IAP inhibitor-mediated sensitization for Mapatumumab- or Lexatumumab-induced apoptosis, our findings provide new insights into the synergistic interaction of IAP inhibitors together with TRAIL receptor agonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Fulda S, Debatin KM . Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A . Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008; 7: 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  4. Fulda S, Galluzzi L, Kroemer G . Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9: 447–464.

    Article  CAS  PubMed  Google Scholar 

  5. Fulda S . Tumor resistance to apoptosis. Int J Cancer 2009; 124: 511–515.

    Article  CAS  PubMed  Google Scholar 

  6. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG . IAP-targeted therapies for cancer. Oncogene 2008; 27: 6252–6275.

    Article  CAS  PubMed  Google Scholar 

  7. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    Article  CAS  PubMed  Google Scholar 

  8. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

    CAS  PubMed  Google Scholar 

  10. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283: 24295–24299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maris JM, Hogarty MD, Bagatell R, Cohn SL . Neuroblastoma. Lancet 2007; 369: 2106–2120.

    Article  CAS  PubMed  Google Scholar 

  12. Fulda S, Wick W, Weller M, Debatin KM . Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    Article  CAS  PubMed  Google Scholar 

  13. Straub CS . Targeting IAPs as an approach to anti-cancer therapy. Curr Top Med Chem 2011; 11: 291–316.

    Article  CAS  PubMed  Google Scholar 

  14. Smith MA, Morton CL, Kolb EA, Gorlick R, Keir ST, Carol H et al. Initial testing (stage 1) of mapatumumab (HGS-ETR1) by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 54: 307–310.

    PubMed  PubMed Central  Google Scholar 

  15. Houghton PJ, Kang MH, Reynolds CP, Morton CL, Kolb EA, Gorlick R et al. Initial testing (stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58: 636–639.

    Article  PubMed  Google Scholar 

  16. Fulda S, Poremba C, Berwanger B, Hacker S, Eilers M, Christiansen H et al. Loss of caspase-8 expression does not correlate with MYCN amplification, aggressive disease, or prognosis in neuroblastoma. Cancer Res 2006; 66: 10016–10023.

    Article  CAS  PubMed  Google Scholar 

  17. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6: 529–535.

    Article  CAS  PubMed  Google Scholar 

  18. Stadel D, Mohr A, Ref C, MacFarlane M, Zhou S, Humphreys R et al. TRAIL-induced apoptosis is preferentially mediated via TRAIL receptor 1 in pancreatic carcinoma cells and profoundly enhanced by XIAP inhibitors. Clin Cancer Res 2010; 16: 5734–5749.

    Article  CAS  PubMed  Google Scholar 

  19. Naumann I, Kappler R, von Schweinitz D, Debatin KM, Fulda S . Bortezomib primes neuroblastoma cells for TRAIL-induced apoptosis by linking the death receptor to the mitochondrial pathway. Clin Cancer Res 2011; 17: 3204–3218.

    Article  CAS  PubMed  Google Scholar 

  20. He S, Wang L, Miao L, Wang T, Du F, Zhao L et al. Receptor interacting protein kinase-3 (RIP3) determines cellular necrotic response to TNFa. Cell 2009; 137: 1100–1111.

    Article  CAS  PubMed  Google Scholar 

  21. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005; 1: 112–119.

    Article  CAS  PubMed  Google Scholar 

  22. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J et al. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 2007; 12: 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    Article  CAS  PubMed  Google Scholar 

  24. Biton S, Ashkenazi ANEMO . and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell 2011; 145: 92–103.

    Article  CAS  PubMed  Google Scholar 

  25. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011; 43: 432–448.

    Article  CAS  PubMed  Google Scholar 

  26. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011; 43: 449–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palacios C, Lopez-Perez AI, Lopez-Rivas A . Down-regulation of RIP expression by 17-dimethylaminoethylamino-17-demethoxygeldanamycin promotes TRAIL-induced apoptosis in breast tumor cells. Cancer Lett 2010; 287: 207–215.

    Article  CAS  PubMed  Google Scholar 

  28. Bellail AC, Tse MC, Song JH, Phuphanich S, Olson JJ, Sun SY et al. DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas. J Cell Mol Med 2010; 14: 1303–1317.

    Article  CAS  PubMed  Google Scholar 

  29. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P . RIP1 a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 2007; 14: 400–410.

    Article  CAS  PubMed  Google Scholar 

  30. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G . Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11: 700–714.

    Article  CAS  PubMed  Google Scholar 

  31. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 2011; 18: 656–665.

    Article  CAS  PubMed  Google Scholar 

  32. Laukens B, Jennewein C, Schenk B, Vanlangenakker N, Schier A, Cristofanon S et al. Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor alpha-induced necroptosis. Neoplasia 2011; 13: 971–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geserick P, Hupe M, Moulin M, Wong WW, Feoktistova M, Kellert B et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 2009; 187: 1037–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM . The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 1997; 57: 3823–3829.

    CAS  PubMed  Google Scholar 

  35. Humphreys RC, Halpern W . Trail receptors: targets for cancer therapy. Adv Exp Med Biol 2008; 615: 127–158.

    Article  CAS  PubMed  Google Scholar 

  36. Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004; 47: 4417–4426.

    Article  CAS  PubMed  Google Scholar 

  37. Chao B, Deckwerth TL, Furth PS, Linton SD, Spada AP, Ullman BR et al. inventors; Tetrapeptide analogs. United States patent PCT/US2005/024700 2006; 16: 02.

    Google Scholar 

  38. Loeder S, Fakler M, Schoeneberger H, Cristofanon S, Leibacher J, Vanlangenakker N et al. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia 2012; 26: 1020–1029.

    Article  CAS  Google Scholar 

  39. Mader I, Wabitsch M, Debatin KM, Fischer-Posovszky P, Fulda S . Identification of a novel proapoptotic function of resveratrol in fat cells: SIRT1-independent sensitization to TRAIL-induced apoptosis. FASEB J 2010; 24: 1997–2009.

    Article  CAS  PubMed  Google Scholar 

  40. Karl S, Pritschow Y, Volcic M, Hacker S, Baumann B, Wiesmuller L et al. Identification of a novel pro-apopotic function of NF-kappaB in the DNA damage response. J Cell Mol Med 2009; 13: 4239–4256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chou TC . The median-effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TC, (ed.) Synergism and Antagonism in Chemotherapy. Academic Press, San Diego, USA, 1991, p 61–102.

    Google Scholar 

Download references

Acknowledgements

We thank X Wang for providing RIP3 antibody and C Hugenberg for expert secretarial assistance. This work has been partially supported by grants from the Deutsche Forschungsgemeinschaft, European Community (ApopTrain, APO-SYS) and IAP6/18 (to SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abhari, B., Cristofanon, S., Kappler, R. et al. RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene 32, 3263–3273 (2013). https://doi.org/10.1038/onc.2012.337

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.337

Keywords

This article is cited by

Search

Quick links