Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Of mice and men: how animal models advance our understanding of T-cell function in RA

Key Points

  • Autoreactive T cells have an important role in the pathogenesis of both rheumatoid arthritis (RA) and mouse models of the disease

  • In addition to similarities, some differences exist in the regulation of the development and plasticity of type 1 and type 17 T-helper cell and regulatory T-cell subsets in humans and mice

  • The contribution of joint-homing T cells to local inflammation in arthritis is not clear in either species

  • Unlike in mouse arthritis, most T-cell-targeting therapeutic strategies failed in RA; only a few of them (such as abatacept) succeeded

  • Anti-cytokine and anti-B-cell therapies might indirectly suppress pathogenic T cells in human and mouse arthritis

Abstract

The involvement of autoreactive T cells in the pathogenesis of rheumatoid arthritis (RA) as well as in autoimmune animal models of arthritis has been well established; however, unanswered questions, such as the role of joint-homing T cells, remain. Animal models of arthritis are superb experimental tools in demonstrating how T cells trigger joint inflammation, and thus can help to further our knowledge of disease mechanisms and potential therapies. In this Review, we discuss the similarities and differences in T-cell subsets and functions between RA and mouse arthritis models. For example, various T-cell subsets are involved in both human and mouse arthritis, but differences might exist in the cytokine regulation and plasticity of these cells. With regard to joint-homing T cells, an abundance of synovial T cells is present in humans compared with mice. On the other hand, local expansion of type 17 T-helper (TH17) cells is observed in some animal models, but not in RA. Finally, whereas T-cell depletion therapy essentially failed in RA, antibody targeting of T cells can work, at least preventatively, in most arthritis models. Clearly, additional human and animal studies are needed to fill the gap in our understanding of the specific contribution of T-cell subsets to arthritis in mice and men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokine regulation of the TH17–TREG cell axis in human RA and its mouse models.

Similar content being viewed by others

References

  1. Kamradt, T. & Frey, O. Arthritis: where are the T cells? Arthritis Res. Ther. 12, 122 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Angyal, A. et al. Development of proteoglycan-induced arthritis depends on T cell-supported autoantibody production, but does not involve significant influx of T cells into the joints. Arthritis Res. Ther. 12, R44 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Szekanecz, Z. & Koch, A. E. Update on synovitis. Curr. Rheumatol. Rep. 3, 53–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Wehrens, E. J., Prakken, B. J. & van Wijk, F. T cells out of control—impaired immune regulation in the inflamed joint. Nat. Rev. Rheumatol. 9, 34–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Wooley, P. H. Animal models of rheumatoid arthritis. Curr. Opin. Rheumatol. 3, 407–420 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Alzabin, S. & Williams, R. O. Effector T cells in rheumatoid arthritis: lessons from animal models. FEBS Lett. 585, 3649–3659 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Glant, T. T., Mikecz, K., Arzoumanian, A. & Poole, A. R. Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum. 30, 201–212 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Glant, T. T., Finnegan, A. & Mikecz, K. Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit. Rev. Immunol. 23, 199–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Misjak, P. et al. The role of citrullination of an immunodominant proteoglycan (PG) aggrecan T cell epitope in BALB/c mice with PG-induced arthritis. Immunol. Lett. 152, 25–31 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi, S., Takahashi, T., Hata, T., Nomura, T. & Sakaguchi, N. SKG mice, a new genetic model of rheumatoid arthritis. Arthritis Res. Ther. 5 (Suppl. 3), 10 (2003).

    Article  PubMed Central  Google Scholar 

  11. Banerjee, S., Webber, C. & Poole, A. R. The induction of arthritis in mice by the cartilage proteoglycan aggrecan: roles of CD4+ and CD8+ T cells. Cell. Immunol. 144, 347–357 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Goldschmidt, T. J., Andersson, M., Malmstrom, V. & Holmdahl, R. Activated type II collagen reactive T cells are not eliminated by in vivo anti-CD4 treatment. Implications for therapeutic approaches on autoimmune arthritis. Immunobiology 184, 359–371 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Kadowaki, K. M., Matsuno, H., Tsuji, H. & Tunru, I. CD4+ T cells from collagen-induced arthritic mice are essential to transfer arthritis into severe combined immunodeficient mice. Clin. Exp. Immunol. 97, 212–218 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schubert, D., Maier, B., Morawietz, L., Krenn, V. & Kamradt, T. Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. J. Immunol. 172, 4503–4509 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Thomas, R., Turner, M. & Cope, A. P. High avidity autoreactive T cells with a low signalling capacity through the T-cell receptor: central to rheumatoid arthritis pathogenesis? Arthritis Res. Ther. 10, 210 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cope, A. P. Altered signalling thresholds in T lymphocytes cause autoimmune arthritis. Arthritis Res. Ther. 6, 112–116 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Snir, O. et al. Multifunctional T cell reactivity with native and glycosylated type II collagen in rheumatoid arthritis. Arthritis Rheum. 64, 2482–2488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Law, S. C. et al. T-cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res. Ther. 14, R118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Kurko, J. et al. Genetics of rheumatoid arthritis—a comprehensive review. Clin. Rev. Allergy Immunol. 45, 170–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brand, D. D. et al. Autoantibodies to murine type II collagen in collagen-induced arthritis: a comparison of susceptible and nonsusceptible strains. J. Immunol. 157, 5178–5184 (1996).

    CAS  PubMed  Google Scholar 

  22. Korganow, A. S. et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Park, S. H. et al. Shift toward T helper 1 cytokines by type II collagen-reactive T cells in patients with rheumatoid arthritis. Arthritis Rheum. 44, 561–569 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. von Delwig, A., Locke, J., Robinson, J. H. & Ng, W. F. Response of TH17 cells to a citrullinated arthritogenic aggrecan peptide in patients with rheumatoid arthritis. Arthritis Rheum. 62, 143–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Masson-Bessiere, C. et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the α- and β-chains of fibrin. J. Immunol. 166, 4177–4184 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Cordova, K. N., Willis, V. C., Haskins, K. & Holers, V. M. A citrullinated fibrinogen-specific T cell line enhances autoimmune arthritis in a mouse model of rheumatoid arthritis. J. Immunol. 190, 1457–1465 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Waase, I., Kayser, C., Carlson, P. J., Goronzy, J. J. & Weyand, C. M. Oligoclonal T cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. Arthritis Rheum. 39, 904–913 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Schirmer, M., Vallejo, A. N., Weyand, C. M. & Goronzy, J. J. Resistance to apoptosis and elevated expression of BCL-2 in clonally expanded CD4+CD28 T cells from rheumatoid arthritis patients. J. Immunol. 161, 1018–1025 (1998).

    CAS  PubMed  Google Scholar 

  30. Miossec, P. & van den Berg, W. TH1/TH2 cytokine balance in arthritis. Arthritis Rheum. 40, 2105–2115 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. De Carli, M., D'Elios, M. M., Zancuoghi, G., Romagnani, S. & Del Prete, G. Human TH1 and TH2 cells: functional properties, regulation of development and role in autoimmunity. Autoimmunity 18, 301–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Laurence, A. & O'Shea, J. J. TH17 differentiation: of mice and men. Nat. Immunol. 8, 903–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. van den Berg, W. B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Janson, P. C. et al. Profiling of CD4+ T cells with epigenetic immune lineage analysis. J. Immunol. 186, 92–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Finnegan, A., Mikecz, K., Tao, P. & Glant, T. T. Proteoglycan (aggrecan)-induced arthritis in BALB/c mice is a TH1-type disease regulated by TH2 cytokines. J. Immunol. 163, 5383–5390 (1999).

    CAS  PubMed  Google Scholar 

  36. Kaplan, C. et al. TH1 and TH2 cytokines regulate proteoglycan-specific autoantibody isotypes and arthritis. Arthritis Res. 4, 54–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hamel, K. M. et al. B cell depletion enhances T regulatory cell activity essential in the suppression of arthritis. J. Immunol. 187, 4900–4906 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Hanyecz, A. et al. Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the TH1 phenotype. Arthritis Rheum. 50, 1665–1676 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nistala, K. et al. TH17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc. Natl Acad. Sci. USA 107, 14751–14756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Doodes, P. D. et al. Development of proteoglycan-induced arthritis is independent of IL-17. J. Immunol. 181, 329–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Stoop, J. N., Tibbitt, C. A., van Eden, W., Robinson, J. H. & Hilkens, C. M. The choice of adjuvant determines the cytokine profile of T cells in proteoglycan-induced arthritis but does not influence disease severity. Immunology 138, 68–75 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  44. Santarlasci, V. et al. Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity 36, 201–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen, C. J. et al. Human TH1 and TH17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J. Immunol. 187, 5615–5626 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chakera, A. et al. The phenotype of circulating follicular-helper T cells in patients with rheumatoid arthritis defines CD200 as a potential therapeutic target. Clin. Dev. Immunol. 2012, 948218 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Weyand, C. M. & Goronzy, J. J. Ectopic germinal center formation in rheumatoid synovitis. Ann. NY Acad. Sci. 987, 140–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, D. & Vinuesa, C. G. The elusive identity of T follicular helper cells. Trends Immunol. 31, 377–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Kamphorst, A. O. & Ahmed, R. Manipulating the PD-1 pathway to improve immunity. Curr. Opin. Immunol. 25, 381–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Linterman, M. A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raptopoulou, A. P. et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 62, 1870–1880 (2010).

    CAS  PubMed  Google Scholar 

  55. Wan, B. et al. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J. Immunol. 177, 8844–8850 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Hamel, K. M. et al. B7-H1 expression on non-B and non-T cells promotes distinct effects on T- and B-cell responses in autoimmune arthritis. Eur J. Immunol. 40, 3117–3127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakayamada, S. et al. Early TH1 cell differentiation is marked by a TFH cell-like transition. Immunity 35, 919–931 (2012).

    Article  CAS  Google Scholar 

  58. Lin, X. et al. Advances in distinguishing natural from induced FOXP3+ regulatory T cells. Int. J. Clin. Exp. Pathol. 6, 116–123 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Flores-Borja, F., Jury, E. C., Mauri, C. & Ehrenstein, M. R. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 105, 19396–19401 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nadkarni, S., Mauri, C. & Ehrenstein, M. R. Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bayry, J., Siberil, S., Triebel, F., Tough, D. F. & Kaveri, S. V. Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov. Today 12, 548–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. McGovern, J. L. et al. TH17 cells are restrained by TREG cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis Rheum. 64, 3129–3138 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Morgan, M. E. et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum. 52, 2212–2221 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Roord, S. T. et al. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+FOXP3+ regulatory T cells. Blood 111, 5233–5241 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen, L. T., Jacobs, J., Mathis, D. & Benoist, C. Where FOXP3-dependent regulatory T cells impinge on the development of inflammatory arthritis. Arthritis Rheum. 56, 509–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Crome, S. Q., Wang, A. Y. & Levings, M. K. Translational mini-review series on TH17 cells: function and regulation of human T helper 17 cells in health and disease. Clin. Exp. Immunol. 159, 109–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Afzali, B., Mitchell, P., Lechler, R. I., John, S. & Lombardi, G. Translational mini-review series on TH17 cells: induction of interleukin-17 production by regulatory T cells. Clin. Exp. Immunol. 159, 120–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O'Connor, R. A., Taams, L. S. & Anderton, S. M. Translational mini-review series on TH17 cells: CD4 T helper cells: functional plasticity and differential sensitivity to regulatory T cell-mediated regulation. Clin. Exp. Immunol. 159, 137–147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma, H. L. et al. Tumor necrosis factor α blockade exacerbates murine psoriasis-like disease by enhancing TH17 function and decreasing expansion of TREG cells. Arthritis Rheum. 62, 430–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Herrath, J. et al. The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur. J. Immunol. 41, 2279–2290 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Koenen, H. J. et al. Human CD25highFOXP3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. van Amelsfort, J. M., Jacobs, K. M., Bijlsma, J. W., Lafeber, F. P. & Taams, L. S. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 50, 2775–2785 (2004).

    Article  PubMed  Google Scholar 

  76. Gal, I. et al. Visualization and in situ analysis of leukocyte trafficking into the ankle joint in a systemic murine model of rheumatoid arthritis. Arthritis Rheum. 52, 3269–3278 (2005).

    Article  PubMed  Google Scholar 

  77. Svendsen, P. et al. Tracking of proinflammatory collagen-specific T cells in early and late collagen-induced arthritis in humanized mice. J. Immunol. 173, 7037–7045 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Szekanecz, Z., Vegvari, A., Szabo, Z. & Koch, A. E. Chemokines and chemokine receptors in arthritis. Front. Biosci. (Schol. Ed.) 2, 153–167 (2010).

    Article  Google Scholar 

  79. Szekanecz, Z., Koch, A. E. & Tak, P. P. Chemokine and chemokine receptor blockade in arthritis, a prototype of immune-mediated inflammatory diseases. Neth. J. Med. 69, 356–366 (2011).

    CAS  PubMed  Google Scholar 

  80. Hirota, K. et al. Preferential recruitment of CCR6-expressing TH17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Loetscher, P. et al. CCR5 is characteristic of TH1 lymphocytes. Nature 391, 344–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Qin, S. et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 101, 746–754 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aggarwal, A., Agarwal, S. & Misra, R. Chemokine and chemokine receptor analysis reveals elevated interferon-inducible protein-10 (IP)-10/CXCL10 levels and increased number of CCR5+ and CXCR3+ CD4 T cells in synovial fluid of patients with enthesitis-related arthritis (ERA). Clin. Exp. Immunol. 148, 515–519 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsui, T. et al. Selective recruitment of CCR6-expressing cells by increased production of MIP-3α in rheumatoid arthritis. Clin. Exp. Immunol. 125, 155–161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aerts, N. E. et al. Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology (Oxford) 49, 2264–2272 (2010).

    Article  CAS  Google Scholar 

  86. Kobezda, T., Ghassemi-Nejad, S., Glant, T. T. & Mikecz, K. In vivo two-photon imaging of T cell motility in joint-draining lymph nodes in a mouse model of rheumatoid arthritis. Cell. Immunol. 278, 158–165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Szekanecz, Z. et al. Anti-citrullinated protein antibodies in rheumatoid arthritis: as good as it gets? Clin. Rev. Allergy Immunol. 34, 26–31 (2008).

    Article  PubMed  Google Scholar 

  88. Nell-Duxneuner, V. et al. Autoantibody profiling in patients with very early rheumatoid arthritis—a follow-up study. Ann. Rheum. Dis. 69, 169–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Klareskog, L., Widhe, M., Hermansson, M. & Ronnelid, J. Antibodies to citrullinated proteins in arthritis: pathology and promise. Curr. Opin. Rheumatol. 20, 300–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Lakos, G. et al. Anti-cyclic citrullinated peptide antibody isotypes in rheumatoid arthritis: association with disease duration, rheumatoid factor production and the presence of shared epitope. Clin. Exp. Rheumatol. 26, 253–260 (2008).

    CAS  PubMed  Google Scholar 

  91. Baeten, D. et al. Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum. 44, 2255–2262 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Chang, X. et al. Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxford) 44, 40–50 (2005).

    Article  CAS  Google Scholar 

  93. Caspi, D. et al. Synovial fluid levels of anti-cyclic citrullinated peptide antibodies and IgA rheumatoid factor in rheumatoid arthritis, psoriatic arthritis, and osteoarthritis. Arthritis Rheum. 55, 53–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fisher, B. A. et al. Heterogeneity of anticitrullinated peptide antibodies and response to anti-tumor necrosis factor agents in rheumatoid arthritis. J. Rheumatol. 39, 929–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Lundberg, K. et al. Antibodies to citrullinated α-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum. 58, 3009–3019 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Cantaert, T. et al. Alterations of the synovial T cell repertoire in anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheum. 60, 1944–1956 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Kidd, B. A. et al. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res. Ther. 10, R119 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Glant, T. T. et al. Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two subtypes of rheumatoid arthritis. Arthritis Rheum. 63, 1312–1321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raza, K., Mullazehi, M., Salmon, M., Buckley, C. D. & Ronnelid, J. Anti-collagen type II antibodies in patients with very early synovitis. Ann. Rheum. Dis. 67, 1354–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Huang, H., Benoist, C. & Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc. Natl Acad. Sci. USA 107, 4658–4663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mikecz, K., Glant, T. T., Buzas, E. & Poole, A. R. Proteoglycan-induced polyarthritis and spondylitis adoptively transferred to naive (nonimmunized) BALB/c mice. Arthritis Rheum. 33, 866–876 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. Keystone, E. Treatments no longer in development for rheumatoid arthritis. Ann. Rheum. Dis. 61 (Suppl. 2), ii43–ii45 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Liossis, S. N. & Sfikakis, P. P. Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin. Immunol. 127, 280–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Feuchtenberger, M. et al. Frequency of regulatory T cells is not affected by transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Open Rheumatol. J. 2, 81–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilk, E. et al. Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis Rheum. 60, 3563–3571 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Vergunst, C. E. et al. MLN3897 plus methotrexate in patients with rheumatoid arthritis: safety, efficacy, pharmacokinetics, and pharmacodynamics of an oral CCR1 antagonist in a phase IIa, double-blind, placebo-controlled, randomized, proof-of-concept study. Arthritis Rheum. 60, 3572–3581 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Egelston, C. et al. Suppression of dendritic cell maturation and t cell proliferation by synovial fluid myeloid cells from mice with autoimmune arthritis. Arthritis Rheum. 64, 3179–3188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marijnissen, R. J. et al. Increased expression of interleukin-22 by synovial TH17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation. Arthritis Rheum. 63, 2939–2948 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Niu, X. et al. IL-21 regulates TH17 cells in rheumatoid arthritis. Hum. Immunol. 71, 334–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Keystone, E. C. Abandoned therapies and unpublished trials in rheumatoid arthritis. Curr. Opin. Rheumatol. 15, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. de Vries, R. Genetics of rheumatoid arthritis: time for a change! Curr. Opin. Rheumatol. 23, 227–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Besenyei, T. et al. Non-MHC risk alleles in rheumatoid arthritis and in the syntenic chromosome regions of corresponding animal models. Clin. Dev. Immunol. 2012, 284751 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yang, L. et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 454, 350–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maddur, M. S., Miossec, P., Kaveri, S. V. & Bayry, J. TH17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol. 181, 8–18 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z. Szekanecz is supported by the Medical Research Council of Hungary research grant ETT 315/2009 and by the European Union, European Social Fund and Hungary co-financed projects TÁMOP 4.2.1/B-09/1/KONV-2010-0007 and TÁMOP-4.2.2.A-11/1/KONV-2012-0031 National Excellence Convergence Program. T. T. Glant is supported by NIH grant R01 AR059356. K. Mikecz is supported by NIH grants R01 AR064206 and R21 AR062332.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for the article and writing the manuscript. In addition, K. Mikecz, T. T. Glant and Z. Szekanecz contributed to discussions of the content of the article, and T. Kobezda, K. Mikecz, T. T. Glant and Z. Szekanecz reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Zoltán Szekanecz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobezda, T., Ghassemi-Nejad, S., Mikecz, K. et al. Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol 10, 160–170 (2014). https://doi.org/10.1038/nrrheum.2013.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing