Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The ascent of acetylation in the epigenetics of rheumatoid arthritis

Abstract

Genome-wide association studies have shown that genetic polymorphisms make a substantial but incomplete contribution to the risk of developing rheumatoid arthritis (RA). Efforts to understand the nongenetic contributions to RA disease susceptibility have recently focused on the study of epigenetic mechanisms, namely modifications of DNA and histones, which are subject to environmental influences and regulate gene expression. A surprising theme emerging from studies of the enzymes responsible for these epigenetic modifications, particularly histone deacetylases, is that they regulate inflammatory activation of cell populations relevant to RA through independent, direct, and dynamic interactions with nonhistone proteins. Herein, we highlight studies, the findings of which collectively suggest that revisiting the original definition of epigenetics, conceived some 70 years ago, might advance our interpretation of DNA and histone modifications with regard to gene expression and clinical outcome in RA. Such an approach could also facilitate the development of strategies to target these epigenetic modifications in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 'working' definition of epigenetic regulation of gene expression.
Figure 2: Compounds targeting the epigenetic regulatory machinery and their effects on cell populations relevant to RA.
Figure 3: Integration of histone modifications, histone-modifying enzymes and signal transduction to regulate gene expression and phenotype in RA.
Figure 4: Applying the epigenetics of Waddington6 to studies in RA.

Similar content being viewed by others

References

  1. Bogdanos, D. P. et al. Twin studies in autoimmune disease: genetics, gender and environment. J. Autoimmun. 38, J156–J169 (2012).

    Article  Google Scholar 

  2. Bax, M., van Heemst, J., Huizinga, T. W. & Toes, R. E. Genetics of rheumatoid arthritis: what have we learned? Immunogenetics 63, 459–466 (2011).

    Article  CAS  Google Scholar 

  3. Knevel, R. et al. Genetic predisposition of the severity of joint destruction in rheumatoid arthritis: a population-based study. Ann. Rheum. Dis. 71, 707–709 (2012).

    Article  Google Scholar 

  4. Ballestar, E. Epigenetic alterations in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 7, 263–271 (2011).

    Article  CAS  Google Scholar 

  5. Huang, S. The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology? Bioessays 34, 149–157 (2012).

    Article  CAS  Google Scholar 

  6. Waddington, C. H. The epigenotype. Endeavour 1, 18–20 (1942).

    Google Scholar 

  7. Russo V. E., Martienssen R. A. & Riggs A. D. (Eds) Epigenetic Mechanisms of Gene Regulation (Cold Spring Harbor Laboratory Press, Woodbury, 1996).

  8. Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).

    Article  CAS  Google Scholar 

  9. Ospelt, C., Reedquist, K. A., Gay, S. & Tak, P. P. Inflammatory memories: is epigenetics the missing link to persistent stromal cell activation in rheumatoid arthritis? Autoimmun. Rev. 10, 519–524 (2011).

    Article  Google Scholar 

  10. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  Google Scholar 

  11. Karouzakis, E. et al. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun. 12, 643–652 (2011).

    Article  CAS  Google Scholar 

  12. Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    Article  CAS  Google Scholar 

  13. Duroux-Richard, I., Jorgensen, C. & Apparailly, F. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum. 64, 11–20 (2012).

    Article  CAS  Google Scholar 

  14. Gardner, K. E., Allis, C. D. & Strahl, B. D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409, 36–46 (2011).

    Article  CAS  Google Scholar 

  15. Yun, M., Wu, J., Workman, J. L. & Li, B. Readers of histone modifications. Cell Res. 21, 564–578 (2011).

    Article  CAS  Google Scholar 

  16. Horiuchi, M. et al. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J. Rheumatol. 36, 1580–1589 (2009).

    Article  CAS  Google Scholar 

  17. Huber, L. C. et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 56, 1087–1093 (2007).

    Article  CAS  Google Scholar 

  18. Kawabata, T. et al. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-α in synovial tissue of rheumatoid arthritis. Arthritis Res. Ther. 12, R133 (2010).

    Article  Google Scholar 

  19. Grabiec, A. M., Tak, P. P. & Reedquist, K. A. Function of histone deacetylase inhibitors in inflammation. Crit Rev. Immunol. 31, 233–263 (2011).

    Article  CAS  Google Scholar 

  20. Beier, U. H. et al. Histone deacetylases 6 and 9 and sirtuin-1 control FOXP3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci. Signal. 5, ra45 (2012).

    Article  Google Scholar 

  21. de Zoeten, E. F., Wang, L., Sai, H., Dillmann, W. H. & Hancock, W. W. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 138, 583–594 (2010).

    Article  CAS  Google Scholar 

  22. de Zoeten, E. F. et al. Histone deacetylase 6 and heat shock protein 90 control the functions of FOXP3+ T-regulatory cells. Mol. Cell Biol. 31, 2066–2078 (2011).

    Article  CAS  Google Scholar 

  23. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104, 4571–4576 (2007).

    Article  CAS  Google Scholar 

  24. van Loosdregt J. et al. Regulation of TREG functionality by acetylation-mediated FOXP3 protein stabilization. Blood 115, 965–974 (2010).

    Article  CAS  Google Scholar 

  25. van Loosdregt, J. et al. Rapid temporal control of FOXP3 protein degradation by sirtuin-1. PLoS ONE 6, e19047 (2011).

    Article  CAS  Google Scholar 

  26. Navarro, M. N., Goebel, J., Feijoo-Carnero, C., Morrice, N. & Cantrell, D. A. Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat. Immunol. 12, 352–361 (2011).

    Article  CAS  Google Scholar 

  27. Barnes, P. J. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 6, 693–696 (2009).

    Article  CAS  Google Scholar 

  28. Grabiec, A. M. et al. Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J. Immunol. 184, 2718–2728 (2010).

    Article  CAS  Google Scholar 

  29. Niederer, F. et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann. Rheum. Dis. 70, 1866–1873 (2011).

    Article  CAS  Google Scholar 

  30. Gillespie, J. et al. Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum. 64, 418–422 (2012).

    Article  CAS  Google Scholar 

  31. Chen, X. et al. Requirement for the histone deacetylase HDAC3 for the inflammatory gene expression program in macrophages. Proc. Natl Acad. Sci. USA 109, E2865–E2874 (2012).

    Article  CAS  Google Scholar 

  32. Mullican, S. E. et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 25, 2480–2488 (2011).

    Article  CAS  Google Scholar 

  33. Watson, P. J., Fairall, L., Santos, G. M. & Schwabe, J. W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335–340 (2012).

    Article  CAS  Google Scholar 

  34. Prinjha, R. K., Witherington, J. & Lee, K. Place your BETs: the therapeutic potential of bromodomains. Trends Pharmacol. Sci. 33, 146–153 (2012).

    Article  CAS  Google Scholar 

  35. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  Google Scholar 

  36. Grabiec, A. M., Korchynskyi, O., Tak, P. P. & Reedquist, K. A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71, 424–431 (2012).

    Article  CAS  Google Scholar 

  37. Lundh, M. et al. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children. Diabetologia 55, 2421–2431 (2012).

    Article  CAS  Google Scholar 

  38. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    Article  CAS  Google Scholar 

  39. Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011).

    Article  CAS  Google Scholar 

  40. US National Library of Medicine. ClinicalTrials.gov [online] (2012).

  41. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29, 255–265 (2011).

    Article  CAS  Google Scholar 

  42. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  Google Scholar 

  43. Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12, 29–36 (2011).

    Article  CAS  Google Scholar 

  44. Gu, B. & Zhu, W. G. Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8, 672–684 (2012).

    Article  Google Scholar 

  45. Tanikawa, C. et al. Regulation of histone modification and chromatin structure by the p53–PADI4 pathway. Nat. Commun. 3, 676 (2012).

    Article  Google Scholar 

  46. Liu, X. et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc. Natl Acad. Sci. USA 108, 1925–1930 (2011).

    Article  CAS  Google Scholar 

  47. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).

    Article  CAS  Google Scholar 

  48. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  Google Scholar 

  49. Das, J. et al. Digital signaling and hysteresis characterize Ras activation in lymphoid cells. Cell 136, 337–351 (2009).

    Article  CAS  Google Scholar 

  50. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. M. Grabiec and K. A. Reedquist contributed equally to all stages of the preparation of this manuscript.

Corresponding author

Correspondence to Kris A. Reedquist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Postulated mechanism of HDAC inhibitor action in animal models of arthritis (DOC 54 kb)

Supplementary Table 2

Biological roles of HDAC isoforms in cells relevant to RA pathology (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabiec, A., Reedquist, K. The ascent of acetylation in the epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 9, 311–318 (2013). https://doi.org/10.1038/nrrheum.2013.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing