Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting co-stimulatory pathways: transplantation and autoimmunity

Key Points

  • T-cell co-stimulatory signals, expressed either constitutively or upon activation, critically affect the magnitude and character of autoreactive or alloreactive T-cell responses

  • Targeting T-cell co-stimulation pathways to reduce pathological T-cell responses has met with therapeutic success in many instances, but challenges remain

  • Efficacy of co-stimulatory blockade with abatacept or belatacept could be further optimized to improve inhibition of alloreactive and autoreactive T-cell responses by leaving co-inhibitory signals intact

  • Clinical application of CD154 pathway blockade has, thus far, been limited, but novel reagents in development might allow for therapeutic manipulation of this pathway to achieve immunological tolerance

  • Several other T-cell co-stimulatory pathways also hold promise as therapeutic targets for the treatment of autoimmunity and transplant rejection

  • Understanding the interplay between individual co-stimulatory and co-inhibitory pathways will lead to rational and targeted therapeutic interventions to manipulate T-cell responses and improve clinical outcomes

Abstract

The myriad of co-stimulatory signals expressed, or induced, upon T-cell activation suggests that these signalling pathways shape the character and magnitude of the resulting autoreactive or alloreactive T-cell responses during autoimmunity or transplantation, respectively. Reducing pathological T-cell responses by targeting T-cell co-stimulatory pathways has met with therapeutic success in many instances, but challenges remain. In this Review, we discuss the T-cell co-stimulatory molecules that are known to have critical roles during T-cell activation, expansion, and differentiation. We also outline the functional importance of T-cell co-stimulatory molecules in transplantation, tolerance and autoimmunity, and we describe how therapeutic blockade of these pathways might be harnessed to manipulate the immune response to prevent or attenuate pathological immune responses. Ultimately, understanding the interplay between individual co-stimulatory and co-inhibitory pathways engaged during T-cell activation and differentiation will lead to rational and targeted therapeutic interventions to manipulate T-cell responses and improve clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexities of the CD28 co-stimulatory pathway.
Figure 2: Comparison of abatacept and belatacept with selective CD28 blockade, and implications for T-cell activation.
Figure 3: Co-stimulatory pathways that might modulate memory T-cell responses in transplantation and autoimmunity.

Similar content being viewed by others

References

  1. Salomon, B. & Bluestone, J. A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Bour-Jordan, H. et al. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol. Rev. 241, 180–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Linsley, P. S. et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257, 792–795 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Lenschow, D. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 257, 789–792 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Finck, B. K., Linsley, P. S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science 265, 1225–1227 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Wells, A. D. et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat. Med. 5, 1303–1307 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Trambley, J. et al. Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J. Clin. Invest. 104, 1715–1722 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ford, M. L. et al. A critical precursor frequency of donor-reactive CD4+ T cell help is required for CD8+ T cell-mediated CD28/CD154-independent rejection. J. Immunol. 180, 7203–7211 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Adams, A. B. et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest. 111, 1887–1895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Floyd, T. L. et al. Limiting the amount and duration of antigen exposure during priming increases memory T cell requirement for costimulation during recall. J. Immunol. 186, 2033–2041 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Bingaman, A. W. & Farber, D. L. Memory T cells in transplantation: generation, function, and potential role in rejection. Am. J. Transplant. 4, 846–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Yamada, Y. et al. Overcoming memory T-cell responses for induction of delayed tolerance in nonhuman primates. Am. J. Transplant. 12, 330–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Ndejembi, M. P. et al. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. J. Immunol. 177, 7698–7706 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, X. et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J. Exp. Med. 205, 3133–3144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ford, M. L. et al. Antigen-specific precursor frequency impacts T cell proliferation, differentiation, and requirement for costimulation. J. Exp. Med. 204, 299–309 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kremer, J. M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parulekar, A. D. et al. A randomized controlled trial to evaluate inhibition of T-cell costimulation in allergen-induced airway inflammation. Am. J. Respir. Crit. Care Med. 187, 494–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linsley, P. S. & Nadler, S. G. The clinical utility of inhibiting CD28-mediated costimulation. Immunol. Rev. 229, 307–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Merrill, J. T. et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 3077–3087 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sandborn, W. J. et al. Abatacept for Crohn's disease and ulcerative colitis. Gastroenterology 143, 62–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Larsen, C. P. et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Vincenti, F. et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353, 770–781 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Vincenti, F. et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT Study). Am. J. Transplant. 10, 535–546 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Nadazdin, O. et al. Host alloreactive memory T cells influence tolerance to kidney allografts in nonhuman primates. Sci. Transl. Med. 3, 86ra51 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Burrell, B. E., Csencsits, K., Lu, G., Grabauskiene, S. & Bishop, D. K. CD8+ Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. J. Immunol. 181, 3906–3914 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Vincenti, F. et al. Five-year safety and efficacy of belatacept in renal transplantation. J. Am. Soc. Nephrol. 21, 1587–1596 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mellor, A. L. et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2, 3 dioxygenase. Int. Immunol. 16, 1391–1401 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Munn, D. H., Sharma, M. D. & Mellor, A. L. Ligation of B7–1/B7–2 by human CD4+ T cells triggers indoleamine 2, 3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H. & Freeman, G. J. Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Waibler, Z. et al. Toward experimental assessment of receptor occupancy: TGN1412 revisited. J. Allergy Clin. Immunol. 122, 890–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Waibler, Z. et al. Signaling signatures and functional properties of anti-human CD28 superagonistic antibodies. PLoS ONE 3, e1708 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang, T. et al. Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner. Am. J. Transplant. 11, 1599–1609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poirier, N. et al. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci. Transl. Med. 2, 17ra10 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe, M. et al. AP-1 is involved in ICOS gene expression downstream of TCR/CD28 and cytokine receptor signaling. Eur. J. Immunol. 42, 1850–1862 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Yao, S. et al. B7-h2 is a costimulatory ligand for CD28 in human. Immunity 34, 729–740 (2010).

    Article  CAS  Google Scholar 

  44. Ansari, M. J. et al. Role of ICOS pathway in autoimmune and alloimmune responses in NOD mice. Clin. Immunol. 126, 140–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Sporici, R. A. et al. ICOS ligand costimulation is required for T-cell encephalitogenicity. Clin. Immunol. 100, 277–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Sporici, R. A. & Perrin, P. J. Costimulation of memory T-cells by ICOS: a potential therapeutic target for autoimmunity? Clin. Immunol. 100, 263–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Ozkaynak, E. et al. Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat. Immunol. 2, 591–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Nanji, S. A. et al. Costimulation blockade of both inducible costimulator and CD40 ligand induces dominant tolerance to islet allografts and prevents spontaneous autoimmune diabetes in the NOD mouse. Diabetes 55, 27–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Schenk, A. D., Gorbacheva, V., Rabant, M., Fairchild, R. L. & Valujskikh, A. Effector functions of donor-reactive CD8 memory T cells are dependent on ICOS induced during division in cardiac grafts. Am. J. Transplant. 9, 64–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Hu, Y. L., Metz, D. P., Chung, J., Siu, G. & Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol. 182, 1421–1428 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Nurieva, R. I., Treuting, P., Duong, J., Flavell, R. A. & Dong, C. Inducible costimulator is essential for collagen-induced arthritis. J. Clin. Invest. 111, 701–706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paulos, C. M. et al. The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci. Transl. Med. 2, 55ra78 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Garaude, J. & Blander, J. M. ICOStomizing immunotherapies with T(H)17. Sci. Transl. Med. 2, 55ps52 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. Kirk, A. D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat. Med. 5, 686–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Ochando, J. C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 7, 652–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ferrer, I. R. et al. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc. Natl Acad. Sci. USA 108, 20701–20706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kendal, A. R. et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J. Exp. Med. 208, 2043–2053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kawai, T., Andrews, D., Colvin, R. B., Sachs, D. H. & Cosimi, A. B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med. 6, 114 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Monk, N. J. et al. Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat. Med. 9, 1275–1280 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Gilson, C. R. et al. Anti-CD40 monoclonal antibody synergizes with CTLA4-Ig in promoting long-term graft survival in murine models of transplantation. J. Immunol. 183, 1625–1635 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Haanstra, K. G. et al. Prevention of kidney allograft rejection using anti-CD40 and anti-CD86 in primates. Transplantation 75, 637–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Daley, S. R., Cobbold, S. P. & Waldmann, H. Fc-disabled anti-mouse CD40L antibodies retain efficacy in promoting transplantation tolerance. Am. J. Transplant. 8, 2265–2271 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Pinelli, D. F. et al. An anti-CD154 domain antibody prolongs graft survival and induces FoxP3+ iTreg in the absence and presence of CTLA-4 Ig. Am. J. Transplant. http://dx.doi.org/10.1111/ajt.12417.

  66. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Nimmerjahn, F., Bruhns, P., Horiuchi, K. & Ravetch, J. V. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Baudino, L. et al. Crucial role of aspartic acid at position 265 in the CH2 domain for murine IgG2a and IgG2b Fc-associated effector functions. J. Immunol. 181, 6664–6669 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Bennett, S. R. M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Johnson, S. et al. Selected Toll-like receptor ligands and viruses promote helper-independent cytotoxic T cell priming by upregulating CD40L on dendritic cells. Immunity 30, 218–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297, 2060–2063 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Munroe, M. E. Functional roles for T cell CD40 in infection and autoimmune disease: the role of CD40 in lymphocyte homeostasis. Semin. Immunol. 21, 283–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Bhadra, R., Gigley, J. P. & Khan, I. A. Cutting edge: CD40-CD40 ligand pathway plays a critical CD8-intrinsic and -extrinsic role during rescue of exhausted CD8 T cells. J. Immunol. 187, 4421–4425 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, D., Ferrer, I. R., Konomos, M. & Ford, M. L. Inhibition of CD8+ T cell–derived CD40 signals is necessary but not sufficient for Foxp3+ induced regulatory T cell generation in vivo. J. Immunol. http://dx.doi.org/10.4049/jimmunol.1300267.

  78. Pearson, T. C. et al. Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation 74, 933–940 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Adams, A. B. et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J. Immunol. 174, 542–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Thompson, P. et al. CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates. Am. J. Transplant. 11, 947–957 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Badell, I. R. et al. CTLA4Ig prevents alloantibody formation following nonhuman primate islet transplantation using the CD40-specific antibody 3A8. Am. J. Transplant. 12, 1918–1923 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Page, A. et al. CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am. J. Transplant. 12, 115–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Lowe, M. et al. A novel monoclonal antibody to CD40 prolongs islet allograft survival. Am. J. Transplant. 12, 2079–2087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Badell, I. R. et al. Nondepleting anti-CD40-based therapy prolongs allograft survival in nonhuman primates. Am. J. Transplant. 12, 126–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Oura, T. et al. Long-term hepatic allograft acceptance based on CD40 blockade by ASKP1240 in nonhuman primates. Am. J. Transplant. 12, 1740–1754 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Aoyagi, T. et al. A human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in cynomolgus monkeys: induction and maintenance therapy. Am. J. Transplant. 9, 1732–1741 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Imai, A. et al. A novel fully human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in cynomolgus monkeys. Transplantation 84, 1020–1028 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vu, M. D. et al. Critical, but conditional, role of OX40 in memory T cell-mediated rejection. J. Immunol. 176, 1394–1401 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Vu, M. D. et al. OX40 costimulation turns off Foxp3+ Tregs. Blood 110, 2501–2510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jember, A. G., Zuberi, R., Liu, F. T. & Croft, M. Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J. Exp. Med. 193, 387–392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xiao, X. et al. OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat. Immunol. 13, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nicolls, M. R. & Gill, R. G. LFA-1 (CD11a) as a therapeutic target. Am. J. Transplant. 6, 27–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Springer, T. A. & Dustin, M. L. Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24, 107–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Setoguchi, K. et al. LFA-1 Antagonism inhibits early infiltration of endogenous memory CD8 T cells into cardiac allografts and donor-reactive T cell priming. Am. J. Transplant. 11, 923–935 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kitchens, W. H. et al. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8(+) memory T cells. Am. J. Transplant. 12, 69–80 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Thompson, P. et al. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am. J. Transplant. 12, 1765–1775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Poston, R. S. et al. Effects of humanized monoclonal antibody to rhesus CD11a in rhesus monkey cardiac allograft recipients. Transplantation 69, 2005–2013 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Badell, I. R. et al. LFA-1-specific therapy prolongs allograft survival in rhesus macaques. J. Clin. Invest. 120, 4520–4531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reisman, N. M. et al. LFA-1 blockade induces effector and regulatory T-cell enrichment in lymph nodes and synergizes with CTLA-4Ig to inhibit effector function. Blood 118, 5851–5861 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Singh, K. et al. Regulatory T cells exhibit decreased proliferation but enhanced suppression after pulsing with sirolimus. Am. J. Transplant. 12, 1441–1457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lebwohl, M. et al. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N. Engl. J. Med. 349, 2004–2013 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Leonardi, C. L. et al. Extended efalizumab therapy improves chronic plaque psoriasis: results from a randomized phase III trial. J. Am. Acad. Dermatol. 52, 425–433 (2005).

    Article  PubMed  Google Scholar 

  104. Vincenti, F. et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am. J. Transplant. 7, 1770–1777 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Posselt, A. M. et al. Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab. Am. J. Transplant. 10, 1870–1880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Turgeon, N. A. et al. Experience with a novel efalizumab-based immunosuppressive regimen to facilitate single donor islet cell transplantation. Am. J. Transplant. 10, 2082–2091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Carson, K. R. et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol. 10, 816–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Tan, C. S. & Koralnik, I. J. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 9, 425–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sanders, M. E. et al. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J. Immunol. 140, 1401–1407 (1988).

    CAS  PubMed  Google Scholar 

  110. Weaver, T. A. et al. Alefacept promotes co-stimulation blockade based allograft survival in nonhuman primates. Nat. Med. 15, 746–749 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moingeon, P. et al. CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature 339, 312–314 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. van der Merwe, P. A. A subtle role for CD2 in T cell antigen recognition. J. Exp. Med. 190, 1371–1374 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lo, D. J. et al. Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression. Am. J. Transplant. 11, 22–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Ellis, C. N., Krueger, G. G. & Alefacept Clinical Study Group. Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N. Engl. J. Med. 345, 248–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Brimhall, A. K., King, L. N., Licciardone, J. C., Jacobe, H. & Menter, A. Safety and efficacy of alefacept, efalizumab, etanercept and infliximab in treating moderate to severe plaque psoriasis: a meta-analysis of randomized controlled trials. Br. J. Dermatol. 159, 274–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Lowe, M. C. et al. Belatacept and sirolimus prolong nonhuman primate islet allograft survival: adverse consequences of concomitant alefacept therapy. Am. J. Transplant. 13, 312–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Lo, D. J. et al. Belatacept and sirolimus prolong nonhuman primate renal allograft survival without a requirement for memory T cell depletion. Am. J. Transplant. 13, 320–328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rigby, M. R., Trexler, A. M., Pearson, T. C. & Larsen, C. P. CD28/CD154 blockade prevents autoimmune diabetes by inducing nondeletional tolerance after effector t-cell inhibition and regulatory T-cell expansion. Diabetes 57, 2672–2683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kirk, A. D. et al. CTLA4Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl Acad. Sci. USA 94, 8789–8794 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Badell, I. R. et al. Nondepleting anti-CD40-based therapy prolongs allograft survival in nonhuman primates. Am. J. Transplant. 12, 126–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Demirci, G. et al. Critical role of OX40 in CD28 and CD154-independent rejection. J. Immunol. 172, 1691–1698 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Murakawa, T. et al. Simultaneous LFA-1 and CD40 ligand antagonism prevents airway remodeling in orthotopic airway transplantation: implications for the role of respiratory epithelium as a modulator of fibrosis. J. Immunol. 174, 3869–3879 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Arefanian, H. et al. Combination of anti-CD4 with anti-LFA-1 and anti-CD154 monoclonal antibodies promotes long-term survival and function of neonatal porcine islet xenografts in spontaneously diabetic NOD mice. Cell Transplant. 16, 787–798 (2007).

    Article  PubMed  Google Scholar 

  124. Kitchens, W. H., Haridas, D., Wagener, M. E., Song, M. & Ford, M. L. Combined costimulatory and leukocyte functional antigen-1 blockade prevents transplant rejection mediated by heterologous immune memory alloresponses. Transplantation 93, 997–1005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gibbons, C. & Sykes, M. Manipulating the immune system for anti-tumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunol. Rev. 223, 334–360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wekerle, T. et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat. Med. 6, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Sykes, M. Mixed chimerism and transplant tolerance. Immunity 14, 417–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Kean, L. S. et al. Induction of chimerism in rhesus macaques through stem cell transplant and costimulation blockade-based immunosuppression. Am. J. Transplant. 7, 320–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Parker, D. C. et al. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc. Natl Acad. Sci. USA 92, 9560–9564 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Markees, T. G. et al. Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4(+) T cells, interferon-gamma, and CTLA4. J. Clin. Invest. 101, 2446–2455 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Taylor, P. A., Friedman, T. M., Korngold, R., Noelle, R. J. & Blazar, B. R. Tolerance induction of alloreactive T cells via ex vivo blockade of the CD40:CD40L costimulatory pathway results in the generation of a potent immune regulatory cell. Blood 99, 4601–4609 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, T. et al. Prevention of allograft tolerance by bacterial infection with Listeria monocytogenes. J. Immunol. 180, 5991–5999 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, T. et al. Infection with the intracellular bacterium, Listeria monocytogenes, overrides established tolerance in a mouse cardiac allograft model. Am. J. Transplant. 10, 1524–1533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Taylor, P. A., Lees, C. J., Waldmann, H., Noelle, R. J. & Blazar, B. R. Requirements for the promotion of allogeneic engraftment by anti-CD154 (anti-CD40L) monoclonal antibody under nonmyeloablative conditions. Blood 98, 467–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Taylor, P. A., Noelle, R. J. & Blazar, B. R. CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 193, 1311–1318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kendal, A. R. et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J. Exp. Med. 208, 2043–2053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhai, Y., Meng, L., Gao, F., Busuttil, R. W. & Kupiec-Weglinski, J. W. Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J. Immunol. 169, 4667–4673 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. L. Ford is supported by R01 AI073707 and R01 AI104699. A. B. Adams and T. C. Pearson are supported by U19 AI1051731. The authors acknowledge Scott M. Krummey, Emory University, for help with conceptualization and design of figures.

Author information

Authors and Affiliations

Authors

Contributions

M. L. Ford researched the data for the article. T. C. Pearson and M. L. Ford provided substantial contribution to discussions of the content. T. C. Pearson and M. L. Ford contributed to writing the article. T. C. Pearson, M. L. Ford and A. B. Adams contributed substantially to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Thomas C. Pearson.

Ethics declarations

Competing interests

Mandy L. Ford and Andrew B. Adams have received research grants from Bristol-Myers Squibb. Thomas C. Pearson has received research grants from Bristol-Myers Squibb and Astellas.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, M., Adams, A. & Pearson, T. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nat Rev Nephrol 10, 14–24 (2014). https://doi.org/10.1038/nrneph.2013.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing