Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Corticostriatal connectivity and its role in disease

Key Points

  • Corticostriatal (CStr) projections are formed by two distinct classes of cortical pyramidal neurons: intratelencephalic (IT) and pyramidal tract (PT) neurons. IT and PT neurons are highly differentiated at multiple levels, including long-range axonal projections, local cortical circuits, intrinsic electrical properties, neuromodulatory mechanisms and molecular profiles.

  • Many neurological and neuropsychiatric diseases involve dysfunction in the CStr system. In several of these, evidence is accumulating for specific changes in the functional properties of IT and PT neurons and their circuits.

  • Autism appears to involve changes especially in IT neurons and networks.

  • Amyotrophic lateral sclerosis involves degeneration of corticospinal neurons, a major subtype of PT neurons.

  • In Parkinson's disease, a hypokinetic movement disorder, PT neurons are particularly implicated in the disease process. The therapeutic efficacy of deep brain stimulation in the subthalamic nucleus has been ascribed to antidromic activation of PT neurons in the cortex. In Huntington's disease, a hyperkinetic movement disorder, CStr changes suggest both IT and PT involvement.

  • CStr changes are prominent in neuropsychiatric disorders such as schizophrenia and obsessive-compulsive disorder. In major depression, animal studies point to IT specificity.

  • Collectively the evidence suggests that 'IT/PT imbalance' may be a useful concept for guiding further research into diseases involving CStr dysfunction. The distinct properties of IT and PT neurons present abundant opportunities for developing cell type-specific interventions in these disorders.

Abstract

Corticostriatal projections are essential components of forebrain circuits and are widely involved in motivated behaviour. These axonal projections are formed by two distinct classes of cortical neurons, intratelencephalic (IT) and pyramidal tract (PT) neurons. Convergent evidence points to IT versus PT differentiation of the corticostriatal system at all levels of functional organization, from cellular signalling mechanisms to circuit topology. There is also growing evidence for IT/PT imbalance as an aetiological factor in neurodevelopmental, neuropsychiatric and movement disorders — autism, amyotrophic lateral sclerosis, obsessive-compulsive disorder, schizophrenia, Huntington's and Parkinson's diseases and major depression are highlighted here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-range axonal projections define two classes of CStr neurons.
Figure 2: Intracortical circuits are IT- and PT-specific and hierarchical.
Figure 3: IT and PT neurons have extensively differentiated intrinsic electrophysiology, neuromodulatory properties and molecular profiles.
Figure 4: IT versus PT innervation of striatum may be differentiated along multiple dimensions of striatal circuit organization.
Figure 5: CStr-related changes in ASD, ALS and MDD.
Figure 6: CStr-related changes in OCD and schizophrenia involve subsets of CStr circuits, with some overlap.
Figure 7: CStr changes are prominent in HD and PD but the differential involvement of IT and PT neurons is not fully understood.

Similar content being viewed by others

References

  1. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Pennartz, C. M. et al. Corticostriatal interactions during learning, memory processing, and decision making. J. Neurosci. 29, 12831–12838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferino, F., Thierry, A. M., Saffroy, M. & Glowinski, J. Interhemispheric and subcortical collaterals of medial prefrontal cortical neurons in the rat. Brain Res. 417, 257–266 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Wilson, C. J. Morphology and synaptic connections of crossed corticostriatal neurons in the rat. J. Comp. Neurol. 263, 567–580 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Levesque, M., Charara, A., Gagnon, S., Parent, A. & Deschenes, M. Corticostriatal projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 709, 311–315 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Reiner, A. in Handbook of Basal Ganglia Structure and Function: A Decade of Progress (eds Steiner, H. & Tseng, K. Y.) 323–339 (Academic Press; 2010).

    Book  Google Scholar 

  7. Reiner, A., Hart, N. M., Lei, W. & Deng, Y. Corticostriatal projection neurons — dichotomous types and dichotomous functions. Front. Neuroanat. 4, 142 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fame, R. M., Macdonald, J. L. & Macklis, J. D. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 34, 41–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Molnar, Z. & Cheung, A. F. Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci. Res. 55, 105–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Verstynen, T. D., Badre, D., Jarbo, K. & Schneider, W. Microstructural organizational patterns in the human corticostriatal system. J. Neurophysiol. 107, 2984–2995 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kita, T. & Kita, H. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J. Neurosci. 32, 5990–5999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beloozerova, I. N., Sirota, M. G. & Swadlow, H. A. Activity of different classes of neurons of the motor cortex during locomotion. J. Neurosci. 23, 1087–1097 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Turner, R. S. & DeLong, M. R. Corticostriatal activity in primary motor cortex of the macaque. J. Neurosci. 20, 7096–7108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pasquereau, B. & Turner, R. S. Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. Cereb. Cortex 21, 1362–1378 (2011).

    Article  PubMed  Google Scholar 

  15. Bauswein, E., Fromm, C. & Preuss, A. Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey. Brain Res. 493, 198–203 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Graybiel, A. M. The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15, 638–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Weiler, N., Wood, L., Yu, J., Solla, S. A. & Shepherd, G. M. G. Top-down laminar organization of the excitatory network in motor cortex. Nature Neurosci. 11, 360–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, J. et al. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice. Front. Neural Circuits 2, 1–8 (2008).

    Article  Google Scholar 

  19. Hooks, B. M. et al. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol. 9, e1000572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lefort, S., Tomm, C., Floyd Sarria, J. C. & Petersen, C. C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Thomson, A. M. & Bannister, A. P. Interlaminar connections in the neocortex. Cereb. Cortex 13, 5–14 (2003).

    Article  PubMed  Google Scholar 

  22. Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, C. T., Sheets, P. L., Kiritani, T. & Shepherd, G. M. G. Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nature Neurosci. 13, 739–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Kaneko, T., Cho, R., Li, Y., Nomura, S. & Mizuno, N. Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J. Comp. Neurol. 423, 52–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Swanson, L. W. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Markov, N. T. & Kennedy, H. The importance of being hierarchical. Curr. Opin. Neurobiol. 19 Jan 2013 (doi:10.1016/j.conb.2012.12.008).

    Article  CAS  PubMed  Google Scholar 

  27. Morishima, M. & Kawaguchi, Y. Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci. 26, 4394–4405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown, S. P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiritani, T., Wickersham, I. R., Seung, H. S. & Shepherd, G. M. Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J. Neurosci. 32, 4992–5001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Lubke, J., Egger, V., Sakmann, B. & Feldmeyer, D. Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J. Neurosci. 20, 5300–5311 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, X. J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    Article  PubMed  Google Scholar 

  33. Stern, E. A., Jaeger, D. & Wilson, C. J. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394, 475–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neurosci. 9, 534–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Phillips, C. G. & Porter, R. The pyramidal projection to motoneurones of some muscle groups of the baboon's forelimb. Prog. Brain Res. 12, 222–245 (1964).

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka, Y. H. et al. Local connections of layer 5 GABAergic interneurons to corticospinal neurons. Front. Neural Circuits 5, 1–14 (2011).

    Article  CAS  Google Scholar 

  37. Apicella, A., Wickersham, I. R., Seung, H. S. & Shepherd, G. M. G. Laminarly orthogonal excitation of fast spiking and low threshold spiking interneurons in mouse motor cortex. J. Neurosci. 32, 7021–7033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biel, M., Wahl-Schott, C., Michalakis, S. & Zong, X. Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Berger, T., Larkum, M. E. & Luscher, H. R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Spain, W. J., Schwindt, P. C. & Crill, W. E. Anomalous rectification in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 57, 1555–1576 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Dembrow, N. C., Chitwood, R. A. & Johnston, D. Projection-specific neuromodulation of medial prefrontal cortex neurons. J. Neurosci. 30, 16922–16937 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gee, S. et al. Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J. Neurosci. 32, 4959–4971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sheets, P. L. et al. Corticospinal-specific HCN expression in mouse motor cortex: Ih-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. J. Neurophysiol. 106, 2216–2231 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen, W., Zhang, J. J., Hu, G. Y. & Wu, C. P. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro. Neuroscience 73, 39–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Suter, B. A., Migliore, M. & Shepherd, G. M. G. Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties. Cereb. Cortex 3 Jul 2012 (doi:10.1093/cercor/bhs184).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen, D. & Fetz, E. E. Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo. J. Neurophysiol. 94, 2713–2725 (2005).

    Article  PubMed  Google Scholar 

  47. Vigneswaran, G., Kraskov, A. & Lemon, R. N. Large identified pyramidal cells in macaque motor and premotor cortex exhibit “thin spikes”: implications for cell type classification. J. Neurosci. 31, 14235–14242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mason, A. & Larkman, A. Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex: II. Electrophysiology. J. Neurosci. 10, 1415–1428 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hattox, A. M. & Nelson, S. B. Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J. Neurophysiol. 98, 3330–3340 (2007).

    Article  PubMed  Google Scholar 

  50. Miller, M. N., Okaty, B. W. & Nelson, S. B. Region-specific spike-frequency acceleration in layer 5 pyramidal neurons mediated by Kv1 subunits. J. Neurosci. 28, 13716–13726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grewe, B. F., Bonnan, A. & Frick, A. Back-propagation of physiological action potential output in dendrites of slender-tufted L5A pyramidal neurons. Front. Cell Neurosci. 4, 13 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Giocomo, L. M. & Hasselmo, M. E. Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol. Neurobiol. 36, 184–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Blitz, D. M. & Nusbaum, M. P. Neural circuit flexibility in a small sensorimotor system. Curr. Opin. Neurobiol. 21, 544–552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marder, E. & Thirumalai, V. Cellular, synaptic and network effects of neuromodulation. Neural Netw. 15, 479–493 (2002).

    Article  PubMed  Google Scholar 

  55. Wang, M. et al. α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Matsumura, M., Sawaguchi, T. & Kubota, K. Modulation of neuronal activities by iontophoretically applied catecholamines and acetylcholine in the primate motor cortex during a visual reaction-time task. Neurosci. Res. 8, 138–145 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neurosci. 13, 1526–1533 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Gaspar, P., Bloch, B. & Le Moine, C. D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur. J. Neurosci. 7, 1050–1063 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Seong, H. J. & Carter, A. G. D1 receptor modulation of action potential firing in a subpopulation of layer 5 pyramidal neurons in the prefrontal cortex. J. Neurosci. 32, 10516–10521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Y. & Goldman-Rakic, P. S. D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. Proc. Natl Acad. Sci. USA 101, 5093–5098 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Costa, R. M. Plastic corticostriatal circuits for action learning: what's dopamine got to do with it? Ann. NY Acad. Sci. 1104, 172–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Tritsch, N. X. & Sabatini, B. L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kayser, A. S., Allen, D. C., Navarro-Cebrian, A., Mitchell, J. M. & Fields, H. L. Dopamine, corticostriatal connectivity, and intertemporal choice. J. Neurosci. 32, 9402–9409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Davies, M. F., Deisz, R. A., Prince, D. A. & Peroutka, S. J. Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res. 423, 347–352 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Araneda, R. & Andrade, R. 5-hydroxytryptamine 2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 399–412 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Weber, E. T. & Andrade, R. Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice. Front. Neurosci. 4, 36 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Avesar, D. & Gulledge, A. T. Selective serotonergic excitation of callosal projection neurons. Front. Neural Circuits 6, 1–11 (2012).

    Article  Google Scholar 

  70. Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A. & Andrade, R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc. Natl Acad. Sci. USA 104, 9870–9875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Egeland, M., Warner-Schmidt, J., Greengard, P. & Svenningsson, P. Co-expression of serotonin 5-HT1B and 5-HT4 receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. Neuropharmacology 61, 442–450 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Poorthuis, R. B. et al. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb. Cortex 23, 148–161 (2013).

    Article  PubMed  Google Scholar 

  73. Haj-Dahmane, S. & Andrade, R. Muscarinic activation of a voltage-dependent cation nonselective current in rat association cortex. J. Neurosci. 16, 3848–3861 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arroyo, S., Bennett, C., Aziz, D., Brown, S. P. & Hestrin, S. Prolonged disynaptic inhibition in the cortex mediated by slow, non-α7 nicotinic excitation of a specific subset of cortical interneurons. J. Neurosci. 32, 3859–3864 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kalmbach, A., Hedrick, T. & Waters, J. Selective optogenetic stimulation of cholinergic axons in neocortex. J. Neurophysiol. 107, 2008–2019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakai, S. T. Corticonigral projections from area 6 in the raccoon. Exp. Brain Res. 73, 498–504 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Lei, W., Jiao, Y., Del Mar, N. & Reiner, A. Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J. Neurosci. 24, 8289–8299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ballion, B., Mallet, N., Bezard, E., Lanciego, J. L. & Gonon, F. Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. Eur. J. Neurosci. 27, 2313–2321 (2008).

    Article  PubMed  Google Scholar 

  80. Parthasarathy, H. B. & Graybiel, A. M. Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J. Neurosci. 17, 2477–2491 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Costa, R. M. et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52, 359–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mink, J. W. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch. Neurol. 60, 1365–1368 (2003).

    Article  PubMed  Google Scholar 

  84. Nambu, A. Seven problems on the basal ganglia. Curr. Opin. Neurobiol. 18, 595–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Cohen, M. X. & Frank, M. J. Neurocomputational models of basal ganglia function in learning, memory and choice. Behav. Brain Res. 199, 141–156 (2009).

    Article  PubMed  Google Scholar 

  86. Morita, K., Morishima, M., Sakai, K. & Kawaguchi, Y. Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci. 35, 457–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Crittenden, J. R. & Graybiel, A. M. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat. 5, 59 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shepherd, G. M. G. & Katz, D. M. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr. Opin. Neurobiol. 21, 827–833 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gowen, E. & Hamilton, A. Motor abilities in autism: a review using a computational context. J. Autism Dev. Disord. 43, 323–344 (2012).

    Article  Google Scholar 

  90. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K. & Minshew, N. J. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 17, 951–961 (2007).

    Article  PubMed  Google Scholar 

  91. Keary, C. J. et al. Corpus callosum volume and neurocognition in autism. J. Autism Dev. Disord. 39, 834–841 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Frazier, T. W., Keshavan, M. S., Minshew, N. J. & Hardan, A. Y. A two-year longitudinal MRI study of the corpus callosum in autism. J. Autism Dev. Disord. 42, 2312–2322 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schumann, C. M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurosci. 30, 4419–4427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dinstein, I. et al. Disrupted neural synchronization in toddlers with autism. Neuron 70, 1218–1225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Di Martino, A. et al. Aberrant striatal functional connectivity in children with autism. Biol. Psychiatry 69, 847–856 (2011).

    Article  PubMed  Google Scholar 

  96. Sudhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blundell, J. et al. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J. Neurosci. 30, 2115–2129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Phelan, K. & McDermid, H. E. The 22q13.3 deletion syndrome (Phelan–McDermid Syndrome). Mol. Syndromol. 2, 186–201 (2012).

    CAS  PubMed  Google Scholar 

  99. Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Campbell, D. B. et al. A genetic variant that disrupts MET transcription is associated with autism. Proc. Natl Acad. Sci. USA 103, 16834–16839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Judson, M. C., Eagleson, K. L. & Levitt, P. A new synaptic player leading to autism risk: Met receptor tyrosine kinase. J. Neurodev. Disord. 3, 282–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rudie, J. D. et al. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 75, 904–915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Judson, M. C., Bergman, M. Y., Campbell, D. B., Eagleson, K. L. & Levitt, P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J. Comp. Neurol. 513, 511–531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qiu, S., Anderson, C. T., Levitt, P. & Shepherd, G. M. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated met receptor tyrosine kinase. J. Neurosci. 31, 5855–5864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Judson, M. C., Eagleson, K. L., Wang, L. & Levitt, P. Evidence of cell-nonautonomous changes in dendrite and dendritic spine morphology in the met-signaling-deficient mouse forebrain. J. Comp. Neurol. 518, 4463–4478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Courchesne, E. & Pierce, K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr. Opin. Neurobiol. 15, 225–230 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Frith, C. Is autism a disconnection disorder? Lancet Neurol. 3, 577 (2004).

    Article  PubMed  Google Scholar 

  108. Geschwind, D. H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Borasio, G. D. et al. Dopaminergic deficit in amyotrophic lateral sclerosis assessed with [I-123] IPT single photon emission computed tomography. J. Neurol. Neurosurg. Psychiatry 65, 263–265 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Desai, J. & Swash, M. Extrapyramidal involvement in amyotrophic lateral sclerosis: backward falls and retropulsion. J. Neurol. Neurosurg. Psychiatry 67, 214–216 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sharma, K. R., Sheriff, S., Maudsley, A. & Govind, V. Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. J. Neuroimaging 24 Jan 2012 (doi:10.1111/j.1552-6569.2011.00679.x).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Boukhris, A. et al. A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics 11, 441–448 (2010).

    Article  PubMed  Google Scholar 

  113. Eisen, A. & Weber, M. The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24, 564–573 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Zanette, G. et al. Changes in motor cortex inhibition over time in patients with amyotrophic lateral sclerosis. J. Neurol. 249, 1723–1728 (2002).

    Article  PubMed  Google Scholar 

  115. Vucic, S., Cheah, B. C. & Kiernan, M. C. Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Exp. Neurol. 220, 177–182 (2009).

    Article  PubMed  Google Scholar 

  116. Vucic, S., Nicholson, G. A. & Kiernan, M. C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131, 1540–1550 (2008).

    Article  PubMed  Google Scholar 

  117. Attarian, S., Pouget, J. & Schmied, A. Changes in cortically induced inhibition in amyotrophic lateral sclerosis with time. Muscle Nerve 39, 310–317 (2009).

    Article  PubMed  Google Scholar 

  118. Turner, M. R. & Leigh, P. N. Positron emission tomography (PET) — its potential to provide surrogate markers in ALS. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1 (Suppl. 2), S17–S22 (2000).

    Article  PubMed  Google Scholar 

  119. Brooks, B. R. et al. Functional magnetic resonance imaging (fMRI) clinical studies in ALS — paradigms, problems and promises. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1 (Suppl. 2), S23–32 (2000).

    Article  PubMed  Google Scholar 

  120. Nihei, K., McKee, A. C. & Kowall, N. W. Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol. 86, 55–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Brion, S. & Plas, J. Lesions of the motor cortex in amyotrophic lateral sclerosis. Encephale 12, 81–87 (1986) (in French).

    CAS  PubMed  Google Scholar 

  122. Pasinelli, P. & Brown, R. H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nature Rev. Neurosci. 7, 710–723 (2006).

    Article  CAS  Google Scholar 

  123. Dion, P. A., Daoud, H. & Rouleau, G. A. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nature Rev. Genet. 10, 769–782 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Tovar, Y. R.L. B., Santa-Cruz, L. D. & Tapia, R. Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis. Mol. Neurodegener. 4, 31 (2009).

    Article  CAS  Google Scholar 

  125. Minciacchi, D., Kassa, R. M., Del Tongo, C., Mariotti, R. & Bentivoglio, M. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice. Exp. Neurol. 215, 77–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Geracitano, R. et al. Altered long-term corticostriatal synaptic plasticity in transgenic mice overexpressing human CU/ZN superoxide dismutase (GLY93→ALA) mutation. Neuroscience 118, 399–408 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Stoetzner, C. R., Pettibone, J. R. & Berke, J. D. State-dependent plasticity of the corticostriatal pathway. Neuroscience 165, 1013–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Graybiel, A. M. & Rauch, S. L. Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Langen, M., Kas, M. J., Staal, W. G., van Engeland, H. & Durston, S. The neurobiology of repetitive behavior: of mice. Neurosci. Biobehav. Rev. 35, 345–355 (2011).

    Article  PubMed  Google Scholar 

  130. Aouizerate, B. et al. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog. Neurobiol. 72, 195–221 (2004).

    Article  PubMed  Google Scholar 

  131. Menzies, L. et al. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev. 32, 525–549 (2008).

    Article  PubMed  Google Scholar 

  132. Milad, M. R. & Rauch, S. L. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16, 43–51 (2012).

    Article  PubMed  Google Scholar 

  133. Harrison, B. J. et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 66, 1189–1200 (2009).

    Article  PubMed  Google Scholar 

  134. Sakai, Y. et al. Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur. Psychiatry 26, 463–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Beucke, J. C. et al. Altered cingulostriatal coupling in obsessive-compulsive disorder. Brain Connect. 2, 191–202 (2012).

    Article  PubMed  Google Scholar 

  136. Schulman, J. J. et al. Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front. Hum. Neurosci. 5, 69 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Llinas, R. R., Ribary, U., Jeanmonod, D., Kronberg, E. & Mitra, P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. USA 96, 15222–15227 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shmelkov, S. V. et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nature Med. 16, 598–602 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Kleist, K. Schizophrenic symptoms and cerebral pathology. J. Ment. Sci. 106, 246–255 (1960).

    Article  CAS  PubMed  Google Scholar 

  141. Robbins, T. W. The case of frontostriatal dysfunction in schizophrenia. Schizophr. Bull. 16, 391–402 (1990).

    Article  CAS  PubMed  Google Scholar 

  142. Middleton, F. A. & Strick, P. L. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 42, 183–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Foerde, K. et al. Selective corticostriatal dysfunction in schizophrenia: examination of motor and cognitive skill learning. Neuropsychology 22, 100–109 (2008).

    Article  PubMed  Google Scholar 

  144. Koralek, A. C., Jin, X., Long Ii, J. D., Costa, R. M. & Carmena, J. M. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fornito, A., Zalesky, A., Pantelis, C. & Bullmore, E. T. Schizophrenia, neuroimaging and connectomics. Neuroimage 62, 2296–2314 (2012).

    Article  PubMed  Google Scholar 

  146. Kempf, L. et al. Functional polymorphisms in PRODH are associated with risk and protection for schizophrenia and fronto-striatal structure and function. PLoS Genet. 4, e1000252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Meyer-Lindenberg, A. et al. Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J. Clin. Invest. 117, 672–682 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tan, H. Y. et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J. Clin. Invest. 118, 2200–2208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  Google Scholar 

  150. Lewis, D. A., Curley, A. A., Glausier, J. R. & Volk, D. W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 35, 57–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Lisman, J. Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr. Opin. Neurobiol. 22, 537–544 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Geyer, M. A. & Vollenweider, F. X. Serotonin research: contributions to understanding psychoses. Trends Pharmacol. Sci. 29, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Knable, M. B. & Weinberger, D. R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11, 123–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Vonsattel, J. P. & DiFiglia, M. Huntington disease. J. Neuropathol. Exp. Neurol. 57, 369–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Cepeda, C., Wu, N., Andre, V. M., Cummings, D. M. & Levine, M. S. The corticostriatal pathway in Huntington's disease. Prog. Neurobiol. 81, 253–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Eidelberg, D. & Surmeier, D. J. Brain networks in Huntington disease. J. Clin. Invest. 121, 484–492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Deng, Y. P. et al. Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study. J. Chem. Neuroanat. 27, 143–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Starr, P. A., Kang, G. A., Heath, S., Shimamoto, S. & Turner, R. S. Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway. Exp. Neurol. 211, 227–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cudkowicz, M. & Kowall, N. W. Degeneration of pyramidal projection neurons in Huntington's disease cortex. Ann. Neurol. 27, 200–204 (1990).

    Article  CAS  PubMed  Google Scholar 

  160. Macdonald, V. & Halliday, G. Pyramidal cell loss in motor cortices in Huntington's disease. Neurobiol. Dis. 10, 378–386 (2002).

    Article  PubMed  Google Scholar 

  161. Hedreen, J. C., Peyser, C. E., Folstein, S. E. & Ross, C. A. Neuronal loss in layers V and VI of cerebral cortex in Huntington's disease. Neurosci. Lett. 133, 257–261 (1991).

    Article  CAS  PubMed  Google Scholar 

  162. Rosas, H. D. et al. Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical “disconnection”. Neuroimage 49, 2995–3004 (2010).

    Article  PubMed  Google Scholar 

  163. Di Paola, M. et al. Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington's disease. Cereb. Cortex 22, 2858–2866 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Berardelli, A. et al. Pathophysiology of chorea and bradykinesia in Huntington's disease. Mov. Disord. 14, 398–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Cummings, D. M. et al. Alterations in cortical excitation and inhibition in genetic mouse models of Huntington's disease. J. Neurosci. 29, 10371–10386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Laforet, G. A. et al. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease. J. Neurosci. 21, 9112–9123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hong, S. L. et al. Dysfunctional behavioral modulation of corticostriatal communication in the R6/2 mouse model of Huntington's disease. PLoS ONE 7, e47026 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Miller, B. R., Walker, A. G., Barton, S. J. & Rebec, G. V. Dysregulated neuronal activity patterns implicate corticostriatal circuit dysfunction in multiple rodent models of Huntington's disease. Front. Syst. Neurosci. 5, 26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Andre, V. M., Fisher, Y. E. & Levine, M. S. Altered balance of activity in the striatal direct and indirect pathways in mouse models of Huntington's disease. Front. Syst. Neurosci. 5, 46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gu, X. et al. Pathological cell–cell interactions elicited by a neuropathogenic form of mutant huntingtin contribute to cortical pathogenesis in HD mice. Neuron 46, 433–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  172. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    Article  CAS  PubMed  Google Scholar 

  173. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neurosci. 9, 251–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Orieux, G., Francois, C., Feger, J. & Hirsch, E. C. Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J. Neurosci. 22, 8762–8770 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wilson, C. J. & Bevan, M. D. Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson's disease. Neuroscience 198, 54–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Fasano, A., Daniele, A. & Albanese, A. Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation. Lancet Neurol. 11, 429–442 (2012).

    Article  PubMed  Google Scholar 

  177. Li, Q. et al. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76, 1030–1041 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Mueller, K., Jech, R. & Schroeter, M. L. Deep brain stimulation for Parkinson's disease: letter to the editor. N. Engl. J. Med. 355, 482–483 (2013).

    Google Scholar 

  179. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Price, J. L. & Drevets, W. C. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn. Sci. 16, 61–71 (2012).

    Article  PubMed  Google Scholar 

  181. Schmidt, E. F. et al. Identification of the cortical neurons that mediate antidepressant responses. Cell 149, 1152–1163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Turrigiano, G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Molyneaux, B. J., Arlotta, P., Menezes, J. R. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nature Rev. Neurosci. 8, 427–437 (2007).

    Article  CAS  Google Scholar 

  184. Leone, D. P., Srinivasan, K., Chen, B., Alcamo, E. & McConnell, S. K. The determination of projection neuron identity in the developing cerebral cortex. Curr. Opin. Neurobiol. 18, 28–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Woodworth, M. B., Custo Greig, L., Kriegstein, A. R. & Macklis, J. D. SnapShot: cortical development. Cell 151, 918–918.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Shim, S., Kwan, K. Y., Li, M., Lefebvre, V. & Sestan, N. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sohur, U. S., Padmanabhan, H. K., Kotchetkov, I. S., Menezes, J. R. & Macklis, J. D. Anatomic and molecular development of corticostriatal projection neurons in mice. Cereb. Cortex 31 Oct 2012 (doi:10.1093/cercor/bhs342).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Harwell, C. C. et al. Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation. Neuron 73, 1116–1126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Courchet, J. & Polleux, F. Sonic hedgehog, BOC, and synaptic development: new players for an old game. Neuron 73, 1055–1058 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Tomassy, G. S. et al. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc. Natl Acad. Sci. USA 107, 3576–3581 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rash, B. G. & Grove, E. A. Area and layer patterning in the developing cerebral cortex. Curr. Opin. Neurobiol. 16, 25–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Alfano, C. & Studer, M. Neocortical arealization: evolution, mechanisms and open questions. Dev. Neurobiol. 12 Dec 2012 (doi:10.1002/dneu.22067).

    Article  PubMed  Google Scholar 

  193. Groh, A. et al. Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb. Cortex 20, 826–836 (2010).

    Article  PubMed  Google Scholar 

  194. Fetz, E. E. Operant conditioning of cortical unit activity. Science 163, 955–958 (1969).

    Article  CAS  PubMed  Google Scholar 

  195. Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neurosci. 12, 333–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron, 53, 735–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. Degos, B., Deniau, J. M., Le Cam, J., Mailly, P. & Maurice, N. Evidence for a direct subthalamo-cortical loop circuit in the rat. Eur. J. Neurosci. 27, 2599–2610 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to M. D. Bevan, D. J. Surmeier and K. Svoboda for comments and suggestions, and to T. Kiritani for the image in figure 1. G.M.G.S. is supported by the US National Institutes of Health/National Institute of Neurological Disorders and Stroke grant NS061963.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

Recurrent connectivity

The concept that neurons within a class connect with one another, implying feedback communication within the network.

Hierarchical connectivity

The concept that one class of neurons is functionally downstream from another. The two classes may be in separate areas or locally intermingled. This feedforward arrangement implies control of the downstream population by the upstream population.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shepherd, G. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14, 278–291 (2013). https://doi.org/10.1038/nrn3469

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing