Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using immunotherapy to boost the abscopal effect

Abstract

More than 60 years ago, the effect whereby radiotherapy at one site may lead to regression of metastatic cancer at distant sites that are not irradiated was described and called the abscopal effect (from 'ab scopus', that is, away from the target). The abscopal effect has been connected to mechanisms involving the immune system. However, the effect is rare because at the time of treatment, established immune-tolerance mechanisms may hamper the development of sufficiently robust abscopal responses. Today, the growing consensus is that combining radiotherapy with immunotherapy provides an opportunity to boost abscopal response rates, extending the use of radiotherapy to treatment of both local and metastatic disease. In this Opinion article, we review evidence for this growing consensus and highlight emerging limitations to boosting the abscopal effect using immunotherapy. This is followed by a perspective on current and potential cross-disciplinary approaches, including the use of smart materials to address these limitations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical timeline of some important developments regarding the abscopal effect.
Figure 2: Mechanism of the abscopal effect.

Similar content being viewed by others

References

  1. Atun, R. et al. Expanding global access to radiotherapy. Lancet Oncol. 16, 1153–1186 (2015).

    Article  PubMed  Google Scholar 

  2. Ngwa, W. et al. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine 9, 1063–1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Chang, J. Y. et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer. Int. J. Radiat. Oncol. 65, 1087–1096 (2006).

    Article  Google Scholar 

  4. Baumann, M. et al. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 16, 234–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Mole, R. H. Whole body irradiation — radiobiology or medicine? Br. J. Radiol. 26, 234–241 (1953).

    Article  CAS  PubMed  Google Scholar 

  6. Andrews, J. R. The Radiobiology of Human Cancer Radiotherapy. (Univ. Park Press, 1978).

    Google Scholar 

  7. Hu, Z. I., McArthur, H. L. & Ho, A. Y. The abscopal effect of radiation therapy: what is it and how can we use it in breast cancer? Curr. Breast Cancer Rep. 9, 45–51 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Siva, S., MacManus, M. P. & Martin, R. F. & Martin, O. A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 356, 82–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wersall, P. J. et al. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol. 45, 493–497 (2006).

    Article  PubMed  Google Scholar 

  11. Ohba, K. et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43, 575–577 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Golden, E. B. et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 16, 795–803 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Abuodeh, Y., Venkat, P. & Kim, S. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer 40, 25–37 (2016).

    Article  PubMed  Google Scholar 

  14. Kingsley, D. P. An interesting case of possible abscopal effect in malignant melanoma. Br. J. Radiol 48, 863–866 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Ehlers, G. & Fridman, M. Abscopal effect of radiation in papillary adenocarcinoma. Br. J. Radiol. 46, 220–222 (1973).

    Article  CAS  PubMed  Google Scholar 

  16. Stone, H. B., Peters, L. J. & Milas, L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J. Natl Cancer Inst. 63, 1229–1235 (1979).

    CAS  PubMed  Google Scholar 

  17. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

    Article  PubMed  Google Scholar 

  18. Chakravarty, P. K. et al. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 59, 6028–6032 (1999).

    CAS  PubMed  Google Scholar 

  19. Camphausen, K. et al. Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 63, 1990–1993 (2003).

    CAS  PubMed  Google Scholar 

  20. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  21. Akutsu, Y. et al. Combination of direct intratumoral administration of dendritic cells and irradiation induces strong systemic antitumor effect mediated by GRP94/gp96 against squamous cell carcinoma in mice. Int. J. Oncol. 31, 509–515 (2007).

    CAS  PubMed  Google Scholar 

  22. Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nikitina, E. Y. & Gabrilovich, D. I. Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int. J. Cancer 94, 825–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, K. W. et al. Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int. J. Cancer 109, 685–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Twyman- Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  Google Scholar 

  27. Kang, J., Demaria, S. & Formenti, S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer 4, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grass, G. D., Krishna, N. & Kim, S. The immune mechanisms of abscopal effect in radiation therapy. Curr. Probl. Cancer 40, 10–24 (2016).

    Article  PubMed  Google Scholar 

  29. Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vatner, R. E., Cooper, B. T., Vanpouille-Box, C., Demaria, S. & Formenti, S. C. Combinations of immunotherapy and radiation in cancer therapy. Front. Oncol. 4, 325 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Habets, T. H. et al. Fractionated radiotherapy with 3 × 8 Gy induces systemic anti-tumour responses and abscopal tumour inhibition without modulating the humoral anti-tumour response. PLoS ONE 11, e0159515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hao, Y. et al. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study. Phys. Med. Biol. 61, N697–N707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez-Ruiz, M. E. et al. Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy 16, 1246–1251 (2017).

    Article  PubMed  Google Scholar 

  36. Young, K. H. et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS ONE 11, e0157164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Habets, T. H. P. M. et al. Fractionated radiotherapy with 3 × 8 Gy induces systemic anti-tumour responses and abscopal tumour inhibition without modulating the humoral anti-tumour response. PLoS ONE 11, e0159515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yasuda, K., Nirei, T., Tsuno, N. H., Nagawa, H. & Kitayama, J. Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci. 102, 1257–1263 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Teitz-Tennenbaum, S. et al. Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res. 63, 8466–8475 (2003).

    CAS  PubMed  Google Scholar 

  40. Kanegasaki, S., Matsushima, K., Shiraishi, K., Nakagawa, K. & Tsuchiya, T. Macrophage inflammatory protein derivative ECI301 enhances the alarmin-associated abscopal benefits of tumor radiotherapy. Cancer Res. 74, 5070–5078 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Marconi, R. et al. A meta-analysis of the abscopal effect in preclinical models: is the biologically effective dose a relevant physical trigger? PLoS ONE 12, e0171559 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shiraishi, K. et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin. Cancer Res. 14, 1159–1166 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Filatenkov, A. et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin. Cancer Res. 21, 3727–3739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernstein, M. B., Krishnan, S., Hodge, J. W. & Chang, J. Y. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat. Rev. Clin. Oncol. 13, 516–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson, R. et al. MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat. Commun. 7, 13597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dranoff, G. Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat. Rev. Immunol. 12, 61–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. McNamee, E. N., Korns Johnson, D., Homann, D. & Clambey, E. T. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol. Res. 55, 58–70 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Tregcells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Doedens, A. L. et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, C. et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol. Res. 2, 831–838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Naidoo, J. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26, 2375–2391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Picozzi, V. J., Kozarek, R. A. & Traverso, L. W. Interferon-based adjuvant chemoradiation therapy after pancreaticoduodenectomy for pancreatic adenocarcinoma. Am. J. Surg. 185, 476–480 (2003).

    Article  PubMed  Google Scholar 

  57. Picozzi, V. J. et al. Multicenter phase II trial of adjuvant therapy for resected pancreatic cancer using cisplatin, 5-fluorouracil, and interferon-alfa-2b-based chemoradiation: ACOSOG Trial Z05031. Ann. Oncol. 22, 348–354 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Bang, A. et al. Multicenter evaluation of the tolerability of combined treatment with PD-1 and CTLA-4 immune checkpoint inhibitors and palliative radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 98, 344–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Yasmin-Karim, S., Moreau, M. & Ngwa, W. in AAPM 59th Annual Meeting & Exhibition MO-DE-605-6 (Denver, CO, 2017).

    Google Scholar 

  60. Pierce, R. H., Campbell, J. S., Pai, S. I., Brody, J. D. & Kohrt, H. E. K. In-situ tumor vaccination: bringing the fight to the tumor. Hum. Vaccin. Immunother. 11, 1901–1909 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kohrt, H. E. et al. Dose-escalated, intratumoral TLR9 agonist and low-dose radiation induce abscopal effects in follicular lymphoma. Blood 124, 3092 (2014).

    Article  CAS  Google Scholar 

  62. Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hams, E. et al. The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by B1 cells. Shock 36, 295–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tinganelli, W. et al. Kill-painting of hypoxic tumours in charged particle therapy. Sci. Rep. 5, 17016 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blankenstein, T., Coulie, P. G., Gilboa, E. & Jaffee, E. M. The determinants of tumour immunogenicity. Nat. Rev. Cancer 12, 307–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A. & Formenti, S. C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 1, 365–372 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Reply: Immunosuppressive cell death in cancer. Nat. Rev. Immunol. 17, 402–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Zitvogel, L. & Kroemer, G. Subversion of anticancer immunosurveillance by radiotherapy. Nat. Immunol. 16, 1005–1007 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Ma, Y. et al. How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev. 30, 71–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Gorin, J.-B. et al. Antitumor immunity induced after α irradiation. Neoplasia 16, 319–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng, W. et al. Combination of radiotherapy checkpoint blockade resistance and vaccination overcomes checkpoint blockade resistance. Oncotarget 7, 43039–43051 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Le, D. T. et al. A live-attenuated listeria vaccine (ANZ-100) and a live-attenuated listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin. Cancer Res. 18, 858–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garnett-Benson, C., Hodge, J. W. & Gameiro, S. R. Combination regimens of radiation therapy and therapeutic cancer vaccines: mechanisms and opportunities. Semin. Radiat. Oncol. 25, 46–53 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ngwa, W. et al. Smart radiation therapy biomaterials. Int. J. Radiat. Oncol. 97, 624–637 (2017).

    Article  CAS  Google Scholar 

  77. Toy, R. & Roy, K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng. Transl Med. 1, 47–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thomas, S. N., Vokali, E., Lund, A. W., Hubbell, J. A. & Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35, 814–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Li, S. Y. et al. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J. Control. Release 231, 17–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, M. S. et al. Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat. Oncol. J. 34, 230–238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sinha, N. et al. Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters. Int. J. Radiat. Oncol. Biol. Phys. 91, 385–392 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Detappe, A. et al. AGuIX nanoparticles as a promising platform for image-guided radiation therapy. Cancer Nanotechnol. 6, 4 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luchette, M., Korideck, H., Makrigiorgos, M., Tillement, O. & Berbeco, R. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomedicine 10, 1751–1755 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Low, D. A. in Advances in Radiation Oncology (eds Wong, J. Y. C., Schultheiss, T. E. & Radany, E. H.) 41–67 (Springer, 2017).

    Book  Google Scholar 

  85. Lux, F. et al. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine 10, 1801–1815 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Meir, R. et al. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 9, 6363–6372 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Kalbasi, A., June, C. H., Haas, N. & Vapiwala, N. Radiation and immunotherapy: a synergistic combination. J. Clin. Invest. 123, 2756–2763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. DeMuth, P. C. et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat. Biotechnol. 31, 1082–1085 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park, J. & Babensee, J. E. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 8, 3606–3617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park, J., Gerber, M. H. & Babensee, J. E. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J. Biomed. Mater. Res. A 103, 170–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Shokouhi, B. et al. The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 31, 5759–5771 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Rogers, T. H. & Babensee, J. E. The role of integrins in the recognition and response of dendritic cells to biomaterials. Biomaterials 32, 1270–1279 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Ishii, K. J., Coban, C. & Akira, S. Manifold mechanisms of Toll-like receptor-ligand recognition. J. Clin. Immunol. 25, 511–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Bennewitz, N. L. & Babensee, J. E. The effect of the physical form of poly(lactic-co-glycolic acid) carriers on the humoral immune response to co-delivered antigen. Biomaterials 26, 2991–2999 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Matzelle, M. M. & Babensee, J. E. Humoral immune responses to model antigen co-delivered with biomaterials used in tissue engineering. Biomaterials 25, 295–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Babensee, J. E. Interaction of dendritic cells with biomaterials. Semin. Immunol. 20, 101–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Ng, S. Y. et al. Acute toxicity with intensity modulated radiotherapy versus 3-dimensional conformal radiotherapy during preoperative chemoradiation for locally advanced rectal cancer. Radiother. Oncol. 121, 252–257 (2016).

    Article  PubMed  Google Scholar 

  98. Marabelle, A. et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Invest. 123, 2447–2463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fransen, M. F. et al. Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer. Vaccine 32, 1654–1660 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Fransen, M. F., Sluijter, M., Morreau, H., Arens, R. & Melief, C. J. M. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin. Cancer Res. 17, 2270–2280 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Kaminski, J. M. et al. The controversial abscopal effect. Cancer Treatment Rev. 31, 159–172 (2005).

    Article  CAS  Google Scholar 

  102. Gameiro, S. R. et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5, 403–416 (2014).

    Article  PubMed  Google Scholar 

  103. Lookingbill, D. P., Spangler, N. & Sexton, F. M. Skin involvement as the presenting sign of internal carcinoma: a retrospective study of 7316 cancer patients. J. Am. Acad. Dermatol. 22, 19–26 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Krathen, R. A., Orengo, I. F. & Rosen, T. Cutaneous metastasis: a meta-analysis of data. South. Med. J. 96, 164–167 (2003).

    Article  PubMed  Google Scholar 

  105. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nat. Rev. Cancer 6, 449–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Ahmad, A. Introduction to Cancer Metastasis 1st edn (Academic Press, 2016).

    Google Scholar 

  108. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cormack, R. A., Sridhar, S., Suh, W. W., D'Amico, A. V. & Makrigiorgos, G. M. Biological in situ dose painting for image-guided radiation therapy using drug-loaded implantable devices. Int. J. Radiat. Oncol. 76, 615–623 (2010).

    Article  Google Scholar 

  110. Kumar, R. et al. Nanoparticle-based brachytherapy spacers for delivery of localized combined chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 91, 393–400 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Tada, D. B. et al. Chitosan film containing poly(D,L-lactic-co-glycolic acid) nanoparticles: a platform for localized dual-drug release. Pharm. Res. 27, 1738–1745 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Brigham and Women's Hospital (BWH) Biomedical Research Institute and the US National Institutes of Health (NIH) grant CA205094-01A1.

Author information

Authors and Affiliations

Authors

Contributions

W.N. researched data for the article, made substantial contributions to discussions of the content and wrote the article. O.C.I. researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission. J.D.S., J.H., S.D. and S.C.F. made substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Wilfred Ngwa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngwa, W., Irabor, O., Schoenfeld, J. et al. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 18, 313–322 (2018). https://doi.org/10.1038/nrc.2018.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2018.6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer