Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging evidence for adapting radiotherapy to immunotherapy

Abstract

Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy–immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy–immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.

Key points

  • Numerous clinical studies investigating radiotherapy as a combination partner for immunotherapies, particularly immune-checkpoint inhibitors, failed to reveal a therapeutic benefit over either treatment modality alone.

  • In this context, radiotherapy has often been applied according to conventional regimens and/or target volumes, with limited consideration for potential radiotherapy-driven immunomodulation.

  • Conventional radiation doses and fractionation schedules might result in robust immunosuppression in the tumour microenvironment, at least in part reflecting the repeated killing of circulating immune effector cells.

  • Conventional radiotherapy target volumes are also expected to exacerbate local and systemic immunosuppression given that they often include tumour-draining lymph nodes (which are key sites for the initiation of anticancer immunity) and circulating immune cells.

  • Multiple cellular alterations elicited by radiotherapy are temporally dynamic, suggesting that the treatment schedule (relative timing and sequencing) is a major determinant of the efficacy of radiotherapy–immunotherapy combinations.

  • We surmise that improved radiotherapy regimens and target volumes might enable the development of radiotherapy–immunotherapy combinations with superior clinical activity, at least in some patient populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunostimulatory effects of radiotherapy.
Fig. 2: Immunosuppressive effects of radiotherapy dependent on dose, fractionation and field.
Fig. 3: Strategies to adapt radiotherapy to immunotherapy.

Similar content being viewed by others

References

  1. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    CAS  PubMed  Google Scholar 

  2. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-023-00754-1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    PubMed  Google Scholar 

  6. Mishima, S. et al. Japan Society of Clinical Oncology provisional clinical opinion for the diagnosis and use of immunotherapy in patients with deficient DNA mismatch repair tumors, cooperated by Japanese Society of Medical Oncology, First Edition. Int. J. Clin. Oncol. 25, 217–239 (2020).

    CAS  PubMed  Google Scholar 

  7. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Verma, V. Economic sustainability of immune-checkpoint inhibitors: the looming threat. Nat. Rev. Clin. Oncol. 15, 721–722 (2018).

    CAS  PubMed  Google Scholar 

  9. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    CAS  PubMed  Google Scholar 

  11. Demaria, S., Bhardwaj, N., McBride, W. H. & Formenti, S. C. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys. 63, 655–666 (2005).

    PubMed  PubMed Central  Google Scholar 

  12. Formenti, S. C. & Demaria, S. Future of radiation and immunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 108, 3–5 (2020).

    PubMed  Google Scholar 

  13. Pointer, K. B., Pitroda, S. P. & Weichselbaum, R. R. Radiotherapy and immunotherapy: open questions and future strategies. Trends Cancer 8, 9–20 (2022).

    CAS  PubMed  Google Scholar 

  14. De Ruysscher, D. et al. Radiotherapy toxicity. Nat. Rev. Dis. Prim. 5, 13 (2019).

    PubMed  Google Scholar 

  15. Sullivan, R. J. & Weber, J. S. Immune-related toxicities of checkpoint inhibitors: mechanisms and mitigation strategies. Nat. Rev. Drug Discov. 21, 495–508 (2022).

    CAS  PubMed  Google Scholar 

  16. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    CAS  PubMed  Google Scholar 

  17. Bates, J. E., Sanders, T., Arnone, A., Elmore, S. N. C. & Royce, T. J. Geographic density of linear accelerators and receipt of radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 111, e351–e352 (2021).

    Google Scholar 

  18. Golden, E. B. & Formenti, S. C. Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology 3, e28133 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Rodriguez-Ruiz, M. E., Vitale, I., Harrington, K. J., Melero, I. & Galluzzi, L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat. Immunol. 21, 120–134 (2020).

    CAS  PubMed  Google Scholar 

  20. McLaughlin, M. et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat. Rev. Cancer 20, 203–217 (2020).

    CAS  PubMed  Google Scholar 

  21. Cytlak, U. M. et al. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat. Rev. Immunol. 22, 124–138 (2022).

    CAS  PubMed  Google Scholar 

  22. Paix, A. et al. Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: a review. Crit. Rev. Oncol. Hematol. 123, 138–148 (2018).

    PubMed  Google Scholar 

  23. Golden, E. B., Marciscano, A. E. & Formenti, S. C. Radiation therapy and the in situ vaccination approach. Int. J. Radiat. Oncol. Biol. Phys. 108, 891–898 (2020).

    PubMed  Google Scholar 

  24. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Newcomb, E. W. et al. The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin. Cancer Res. 12, 4730–4737 (2006).

    CAS  PubMed  Google Scholar 

  26. Lhuillier, C. et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J. Clin. Invest. 131, e138740 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Zhou, H. et al. Carbon ion radiotherapy triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy in mice. Oncoimmunology 11, 2057892 (2022).

    PubMed  PubMed Central  Google Scholar 

  29. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Yamazaki, T. et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 21, 1160–1171 (2020).

    CAS  PubMed  Google Scholar 

  33. Rodríguez-Ruiz, M. E. et al. TGFβ blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol. Cancer Ther. 18, 621–631 (2019).

    PubMed  Google Scholar 

  34. Rodriguez-Ruiz, M. E. et al. Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and crosspriming. Cancer Res. 76, 5994–6005 (2016).

    CAS  PubMed  Google Scholar 

  35. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  36. DeSelm, C. et al. Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol. Ther. 26, 2542–2552 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamazaki, T. et al. LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells. Oncoimmunology 10, 1962592 (2021).

    PubMed  PubMed Central  Google Scholar 

  38. Laurent, P. A., Morel, D., Meziani, L., Depil, S. & Deutsch, E. Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology 12, 2158013 (2023).

    PubMed  Google Scholar 

  39. Pilones, K. A. et al. Radiotherapy cooperates with IL15 to induce antitumor immune responses. Cancer Immunol. Res. 8, 1054–1063 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    CAS  PubMed  Google Scholar 

  41. Zhou, Q. et al. Sugemalimab versus placebo after concurrent or sequential chemoradiotherapy in patients with locally advanced, unresectable, stage III non-small-cell lung cancer in China (GEMSTONE-301): interim results of a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 23, 209–219 (2022).

    CAS  PubMed  Google Scholar 

  42. Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    CAS  PubMed  Google Scholar 

  43. Kelly, R. J. et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 384, 1191–1203 (2021).

    CAS  PubMed  Google Scholar 

  44. Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24, 1845–1851 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lim, M. et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro-Oncology 24, 1935–1949 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Omuro, A. et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro-Oncology 25, 123–134 (2023).

    PubMed  Google Scholar 

  47. Lee, N. Y. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22, 450–462 (2021).

    CAS  PubMed  Google Scholar 

  48. Bourhis, J. et al. Avelumab-cetuximab-radiotherapy versus standards of care in patients with locally advanced squamous cell carcinoma of head and neck (LA-SCCHN): randomized phase III GORTEC-REACH trial. Ann. Oncol. 32, S1310–S1310 (2021).

    Google Scholar 

  49. Lo, S. S. et al. Stereotactic body radiation therapy: a novel treatment modality. Nat. Rev. Clin. Oncol. 7, 44–54 (2010).

    PubMed  Google Scholar 

  50. Prasanna, A., Ahmed, M. M., Mohiuddin, M. & Coleman, C. N. Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy. J. Thorac. Dis. 6, 287–302 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jayaprakash, P. et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J. Clin. Invest. 128, 5137–5149 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6Chigh monocytes. Cancer Res. 70, 5728–5739 (2010).

    CAS  PubMed  Google Scholar 

  54. Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

    CAS  PubMed  Google Scholar 

  55. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vignali, P. D. A. et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat. Immunol. 24, 267–279 (2022).

    PubMed  Google Scholar 

  57. Suthen, S. et al. Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC. Hepatology 76, 1329–1344 (2022).

    CAS  PubMed  Google Scholar 

  58. Park, J. H. et al. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat. Immunol. 22, 336–346 (2021).

    CAS  PubMed  Google Scholar 

  59. Sethumadhavan, S. et al. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS ONE 12, e0187314 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Monjazeb, A. M. et al. A randomized trial of combined PD-L1 and CTLA-4 inhibition with targeted low-dose or hypofractionated radiation for patients with metastatic colorectal cancer. Clin. Cancer Res. 27, 2470–2480 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yovino, S., Kleinberg, L., Grossman, S. A., Narayanan, M. & Ford, E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 31, 140–144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wild, A. T. et al. Lymphocyte-sparing effect of stereotactic body radiation therapy in patients with unresectable pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 94, 571–579 (2016).

    PubMed  Google Scholar 

  64. Tang, C. et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int. J. Radiat. Oncol. Biol. Phys. 89, 1084–1091 (2014).

    PubMed  Google Scholar 

  65. Luke, J. J. et al. Improved survival associated with local tumor response following multisite radiotherapy and pembrolizumab: secondary analysis of a phase I trial. Clin. Cancer Res. 26, 6437–6444 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodriguez-Ruiz, M. E. et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 8, e1655964 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e7 (2019).

    CAS  PubMed  Google Scholar 

  68. Marchi, S., Guilbaud, E., Tait, S. W. G., Yamazaki, T. & Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 23, 159–173 (2022).

    PubMed  PubMed Central  Google Scholar 

  69. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    CAS  PubMed  Google Scholar 

  70. Herrera, F. G. et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12, 108–133 (2022).

    CAS  PubMed  Google Scholar 

  71. Barsoumian, H. B. et al. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J. Immunother. Cancer 8, e000537 (2020).

    PubMed  PubMed Central  Google Scholar 

  72. Yin, L. et al. Effect of low-dose radiation therapy on abscopal responses to hypofractionated radiation therapy and anti-PD1 in mice and patients with non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 108, 212–224 (2020).

    PubMed  Google Scholar 

  73. Schoenfeld, J. D. et al. Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 23, 279–291 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chang, J. Y., Verma, V., Welsh, J. W. & Formenti, S. C. Radiotherapy plus immune checkpoint blockade in PD(L)-1-resistant metastatic NSCLC. Lancet Oncol. 23, e156 (2022).

    PubMed  Google Scholar 

  75. Patel, R. R. et al. High-dose irradiation in combination with non-ablative low-dose radiation to treat metastatic disease after progression on immunotherapy: results of a phase II trial. Radiother. Oncol. 162, 60–67 (2021).

    CAS  PubMed  Google Scholar 

  76. Theelen, W. et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 5, 1276–1282 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. McBride, S. et al. Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. J. Clin. Oncol. 39, 30–37 (2021).

    CAS  PubMed  Google Scholar 

  78. De Meerleer, G. et al. Elective nodal radiotherapy in prostate cancer. Lancet Oncol. 22, e348–e357 (2021).

    PubMed  Google Scholar 

  79. Cramer, J. D., Burtness, B., Le, Q. T. & Ferris, R. L. The changing therapeutic landscape of head and neck cancer. Nat. Rev. Clin. Oncol. 16, 669–683 (2019).

    PubMed  Google Scholar 

  80. Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066.e25 (2022).

    CAS  PubMed  Google Scholar 

  81. Prokhnevska, N. et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124.e5 (2023).

    CAS  PubMed  Google Scholar 

  82. Marciscano, A. E. et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin. Cancer Res. 24, 5058–5071 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Buchwald, Z. S. et al. Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy. J. Immunother. Cancer 8, e000867 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. Saddawi-Konefka, R. et al. Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat. Commun. 13, 4298 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Darragh, L. B. et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat. Commun. 13, 7015 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Leidner, R. et al. Neoadjuvant immunoradiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma. J. Immunother. Cancer 9, e002485 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Trowell, O. A. The sensitivity of lymphocytes to ionising radiation. J. Pathol. Bacteriol. 64, 687–704 (1952).

    CAS  PubMed  Google Scholar 

  88. Arina, A. et al. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 10, 3959 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Lee, S. F. et al. Splenic irradiation contributes to grade ≥ 3 lymphopenia after adjuvant chemoradiation for stomach cancer. Clin. Transl. Radiat. Oncol. 36, 83–90 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sakaguchi, M., Maebayashi, T., Aizawa, T., Ishibashi, N. & Okada, M. Association between unintentional splenic radiation and lymphopenia and high neutrophil/lymphocyte ratio after radiotherapy in patients with esophageal cancer. Transl. Cancer Res. 10, 5076–5084 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Reddy, A. V. et al. Vertebral body and splenic irradiation are associated with lymphopenia in localized pancreatic cancer treated with stereotactic body radiation therapy. Radiat. Oncol. 16, 242 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakamura, N., Kusunoki, Y. & Akiyama, M. Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay. Radiat. Res. 123, 224–227 (1990).

    CAS  PubMed  Google Scholar 

  93. Reddy, A. V. et al. Post-radiation neutrophil-to-lymphocyte ratio is a prognostic marker in patients with localized pancreatic adenocarcinoma treated with anti-PD-1 antibody and stereotactic body radiation therapy. Radiat. Oncol. J. 40, 111–119 (2022).

    PubMed  PubMed Central  Google Scholar 

  94. Chen, D. et al. Absolute lymphocyte count predicts abscopal responses and outcomes in patients receiving combined immunotherapy and radiation therapy: analysis of 3 phase 1/2 trials. Int. J. Radiat. Oncol. Biol. Phys. 108, 196–203 (2020).

    PubMed  Google Scholar 

  95. Punjabi, A. et al. Neutrophil-lymphocyte ratio and absolute lymphocyte count as prognostic markers in patients treated with curative-intent radiotherapy for non-small cell lung cancer. Clin. Oncol. 33, e331–e338 (2021).

    CAS  Google Scholar 

  96. MacDougall, K., Niazi, M. R. K., Hosry, J., Homsy, S. & Bershadskiy, A. The prognostic significance of peripheral blood biomarkers in patients with advanced non-small cell lung cancer treated with pembrolizumab: a clinical study. Oncology 36, 156–161 (2022).

    PubMed  Google Scholar 

  97. D’Auria, F. et al. Modulation of peripheral immune cell subpopulations after rapidArc/moderate hypofractionated radiotherapy for localized prostate cancer: findings and comparison with 3D conformal/conventional fractionation treatment. Front. Oncol. 12, 829812 (2022).

    PubMed  PubMed Central  Google Scholar 

  98. Mohan, R. et al. Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons. Neuro-Oncology 23, 284–294 (2021).

    CAS  PubMed  Google Scholar 

  99. Venkatesulu, B. P. et al. Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Sci. Rep. 9, 17180 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Iturri, L. et al. Proton FLASH radiation therapy and immune infiltration: evaluation in an orthotopic glioma rat model. Int. J. Radiat. Oncol. Biol. Phys. https://doi.org/10.1016/j.ijrobp.2022.12.018 (2022).

    Article  PubMed  Google Scholar 

  101. Montay-Gruel, P. et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin. Cancer Res. 27, 775–784 (2021).

    PubMed  Google Scholar 

  102. Favaudon, V. et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 245ra293 (2014).

    Google Scholar 

  103. Moding, E. J., Kastan, M. B. & Kirsch, D. G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov. 12, 526–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fogliata, A. et al. Collimator scatter factor: Monte Carlo and in-air measurements approaches. Radiat. Oncol. 13, 126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Khan, R., Gul, B., Khan, S., Nisar, H. & Ahmad, I. Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagnosis Photodyn. Ther. 33, 102192 (2021).

    CAS  PubMed  Google Scholar 

  106. Wang, K. K. & Zhu, T. C. Modeling scatter-to-primary dose ratio for megavoltage photon beams. Med. Phys. 37, 5270–5278 (2010).

    CAS  PubMed  Google Scholar 

  107. Westermann, W., Schöbl, R., Rieber, E. P. & Frank, K. H. Th2 cells as effectors in postirradiation pulmonary damage preceding fibrosis in the rat. Int. J. Radiat. Biol. 75, 629–638 (1999).

    CAS  PubMed  Google Scholar 

  108. Wirsdorfer, F. et al. Thorax irradiation triggers a local and systemic accumulation of immunosuppressive CD4+ FoxP3+ regulatory T cells. Radiat. Oncol. 9, 98 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Xiong, S. et al. Treg depletion attenuates irradiation-induced pulmonary fibrosis by reducing fibrocyte accumulation, inducing Th17 response, and shifting IFN-γ, IL-12/IL-4, IL-5 balance. Immunobiology 220, 1284–1291 (2015).

    CAS  PubMed  Google Scholar 

  110. Xiong, S. et al. Regulatory T cells promote β-catenin-mediated epithelium-to-mesenchyme transition during radiation-induced pulmonary fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 93, 425–435 (2015).

    CAS  PubMed  Google Scholar 

  111. Park, H. R., Jo, S. K. & Jung, U. Ionizing radiation promotes epithelial-to-mesenchymal transition in lung epithelial cells by TGF-β-producing M2 macrophages. Vivo 33, 1773–1784 (2019).

    CAS  Google Scholar 

  112. Puthawala, K. et al. Inhibition of integrin αvβ6, an activator of latent transforming growth factor-β, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177, 82–90 (2008).

    CAS  PubMed  Google Scholar 

  113. Meyer, J. E. et al. Tissue TGF-β expression following conventional radiotherapy and pulsed low-dose-rate radiation. Cell Cycle 16, 1171–1174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, P. et al. Local tumor control and normal tissue toxicity of pulsed low-dose rate radiotherapy for recurrent lung cancer: an in vivo animal study. Dose Response 13, 1559325815588507 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Myers, C. J. & Lu, B. Decreased survival after combining thoracic irradiation and an anti-PD-1 antibody correlated with increased T-cell infiltration into cardiac and lung tissues. Int. J. Radiat. Oncol. Biol. Phys. 99, 1129–1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Schlaak, R. A. et al. Acquired immunity is not essential for radiation-induced heart dysfunction but exerts a complex impact on injury. Cancers 12, 983 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lenarczyk, M. et al. T cells contribute to pathological responses in the non-targeted rat heart following irradiation of the kidneys. Toxics 10, 797 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Beschel, L. M. et al. T cell abundance in blood predicts acute organ toxicity in chemoradiotherapy for head and neck cancer. Oncotarget 7, 65902–65915 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

    PubMed  PubMed Central  Google Scholar 

  120. Moslehi, J., Lichtman, A. H., Sharpe, A. H., Galluzzi, L. & Kitsis, R. N. Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. J. Clin. Invest. 131, e145186 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    CAS  PubMed  Google Scholar 

  122. Ban, Y. et al. Radiation-activated secretory proteins of Scgb1a1+ club cells increase the efficacy of immune checkpoint blockade in lung cancer. Nat. Cancer 2, 919–931 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yamazaki, T. et al. Boosting CAR T cell expansion and therapeutic activity with low-dose radiation therapy. Int. J. Radiat. Oncol. 108, S158–S159 (2020).

    Google Scholar 

  124. Sugita, M. et al. Radiation therapy improves CAR T cell activity in acute lymphoblastic leukemia. Cell Death Dis. 14, 305 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. John-Aryankalayil, M. et al. Fractionated radiation therapy can induce a molecular profile for therapeutic targeting. Radiat. Res. 174, 446–458 (2010).

    CAS  PubMed  Google Scholar 

  126. Aryankalayil, M. J. et al. Defining molecular signature of pro-immunogenic radiotherapy targets in human prostate cancer cells. Radiat. Res. 182, 139–148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Eke, I. et al. Long-term expression changes of immune-related genes in prostate cancer after radiotherapy. Cancer Immunol. Immunother. 71, 839–850 (2022).

    CAS  PubMed  Google Scholar 

  128. Eke, I. et al. Exploiting radiation-induced signaling to increase the susceptibility of resistant cancer cells to targeted drugs: AKT and mTOR inhibitors as an example. Mol. Cancer Ther. 17, 355–367 (2018).

    CAS  PubMed  Google Scholar 

  129. Petroni, G. et al. Radiotherapy delivered before CDK4/6 inhibitors mediates superior therapeutic effects in ER+ breast cancer. Clin. Cancer Res. 27, 1855–1863 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Eke, I. et al. Long-term tumor adaptation after radiotherapy: therapeutic implications for targeting integrins in prostate cancer. Mol. Cancer Res. 16, 1855–1864 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Weichselbaum, R. R. et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl Acad. Sci. USA 105, 18490–18495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. John-Aryankalayil, M. et al. NS-398, ibuprofen, and cyclooxygenase-2 RNA interference produce significantly different gene expression profiles in prostate cancer cells. Mol. Cancer Ther. 8, 261–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cortez, M. A. et al. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer 58, 244–253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. John-Aryankalayil, M. et al. Fractionated radiation alters oncomir and tumor suppressor miRNAs in human prostate cancer cells. Radiat. Res. 178, 105–117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Eke, I. et al. The lncRNAs LINC00261 and LINC00665 are upregulated in long-term prostate cancer adaptation after radiotherapy. Mol. Ther. Nucleic Acids 24, 175–187 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Aryankalayil, M. J. et al. Radiation-induced long noncoding RNAs in a mouse model after whole-body irradiation. Radiat. Res. 189, 251–263 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Aryankalayil, M. J. et al. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J. Transl. Med. 19, 336 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Palayoor, S. T. et al. Differential expression of stress and immune response pathway transcripts and miRNAs in normal human endothelial cells subjected to fractionated or single-dose radiation. Mol. Cancer Res. 12, 1002–1015 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    CAS  PubMed  Google Scholar 

  141. Petroni, G., Cantley, L. C., Santambrogio, L., Formenti, S. C. & Galluzzi, L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat. Rev. Clin. Oncol. 19, 114–131 (2022).

    CAS  PubMed  Google Scholar 

  142. Lehrer, E. J. et al. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: an international meta-analysis of individual patient data. Radiother. Oncol. 130, 104–112 (2019).

    PubMed  Google Scholar 

  143. Kotecha, R. et al. The impact of sequencing PD-1/PD-L1 inhibitors and stereotactic radiosurgery for patients with brain metastasis. Neuro Oncol. 21, 1060–1068 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dovedi, S. J. et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res. 23, 5514–5526 (2017).

    CAS  PubMed  Google Scholar 

  146. Zhang, X. & Niedermann, G. Abscopal effects with hypofractionated schedules extending into the effector phase of the tumor-specific T-cell response. Int. J. Radiat. Oncol. Biol. Phys. 101, 63–73 (2018).

    PubMed  Google Scholar 

  147. Wei, J. et al. Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci. Immunol. 6, eabg0117 (2021).

    CAS  PubMed  Google Scholar 

  148. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Petroni, G., Formenti, S. C., Chen-Kiang, S. & Galluzzi, L. Immunomodulation by anticancer cell cycle inhibitors. Nat. Rev. Immunol. 20, 669–679 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Jiang, G. L. Particle therapy for cancers: a new weapon in radiation therapy. Front. Med. 6, 165–172 (2012).

    PubMed  Google Scholar 

  151. Ebner, D. K. et al. The immunoregulatory potential of particle radiation in cancer therapy. Front. Immunol. 8, 99 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Marcus, D. et al. Charged particle and conventional radiotherapy: current implications as partner for immunotherapy. Cancers 13, 1468 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gameiro, S. R. et al. Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature, rendering them more sensitive to T cell-mediated killing. Int. J. Radiat. Oncol. Biol. Phys. 95, 120–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Yoshimoto, Y. et al. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J. Radiat. Res. 56, 509–514 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Onishi, M. et al. High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group Box 1 from human cancer cells. J. Radiat. Res. 59, 541–546 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou, H. et al. Carbon ion radiotherapy boosts anti-tumour immune responses by inhibiting myeloid-derived suppressor cells in melanoma-bearing mice. Cell Death Discov. 7, 332 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jiménez-Cortegana, C., Galassi, C., Klapp, V., Gabrilovich, D. I. & Galluzzi, L. Myeloid-derived suppressor cells and radiotherapy. Cancer Immunol. Res. 10, 545–557 (2022).

    PubMed  Google Scholar 

  158. Li, M. et al. Targeted alpha-particle radiotherapy and immune checkpoint inhibitors induces cooperative inhibition on tumor growth of malignant melanoma. Cancers 13, 3676 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Brenneman, R. J. et al. Abscopal effect following proton beam radiotherapy in a patient with inoperable metastatic retroperitoneal sarcoma. Front. Oncol. 9, 922 (2019).

    PubMed  PubMed Central  Google Scholar 

  160. Tanaka, S., Louis, D. N., Curry, W. T., Batchelor, T. T. & Dietrich, J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat. Rev. Clin. Oncol. 10, 14–26 (2013).

    CAS  PubMed  Google Scholar 

  161. Hohlbaum, K. et al. Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice-assessing the degree of distress. PLoS ONE 12, e0179588 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. Buque, A. & Galluzzi, L. Modeling tumor immunology and immunotherapy in mice. Trends Cancer 4, 599–601 (2018).

    CAS  PubMed  Google Scholar 

  163. Zitvogel, L., Pitt, J. M., Daillere, R., Smyth, M. J. & Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer 16, 759–773 (2016).

    CAS  PubMed  Google Scholar 

  164. Buque, A. et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat. Commun. 11, 3819 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Golden, E. B. & Formenti, S. C. Radiation therapy and immunotherapy: growing pains. Int. J. Radiat. Oncol. Biol. Phys. 91, 252–254 (2015).

    PubMed  Google Scholar 

  167. Lhuillier, C., Vanpouille-Box, C., Galluzzi, L., Formenti, S. C. & Demaria, S. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin. Cancer Biol. 52, 125–134 (2018).

    CAS  PubMed  Google Scholar 

  168. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    CAS  PubMed  Google Scholar 

  169. Tivey, A., Church, M., Rothwell, D., Dive, C. & Cook, N. Circulating tumour DNA — looking beyond the blood. Nat. Rev. Clin. Oncol. 19, 600–612 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hodi, F. S. et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1480–1492 (2018).

    CAS  PubMed  Google Scholar 

  171. Theelen, W. et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respir. Med. 9, 467–475 (2021).

    CAS  PubMed  Google Scholar 

  172. Kraehenbuehl, L., Weng, C. H., Eghbali, S., Wolchok, J. D. & Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2022).

    CAS  PubMed  Google Scholar 

  173. Siu, L. et al. Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J. Immunother. Cancer 8, e001095 (2020).

    PubMed  PubMed Central  Google Scholar 

  174. Griffin, R. J. et al. Understanding high-dose, ultra-high dose rate, and spatially fractionated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 107, 766–778 (2020).

    PubMed  Google Scholar 

  175. Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    PubMed  Google Scholar 

  176. Petroni, G., Buqué, A., Coussens, L. M. & Galluzzi, L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug Discov. 21, 440–462 (2022).

    CAS  PubMed  Google Scholar 

  177. Petroni, G., Buque, A., Zitvogel, L., Kroemer, G. & Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 39, 310–345 (2021).

    CAS  PubMed  Google Scholar 

  178. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    CAS  PubMed  Google Scholar 

  179. Schmid, P. et al. Atezolizumab and Nnab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    CAS  PubMed  Google Scholar 

  180. Govindan, R. et al. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J. Clin. Oncol. 35, 3449–3457 (2017).

    CAS  PubMed  Google Scholar 

  181. Galluzzi, L., Kepp, O., Hett, E., Kroemer, G. & Marincola, F. M. Immunogenic cell death in cancer: concept and therapeutic implications. J. Transl. Med. 21, 162 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Nagata, S. & Tanaka, M. Programmed cell death and the immune system. Nat. Rev. Immunol. 17, 333–340 (2017).

    CAS  PubMed  Google Scholar 

  183. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).

    CAS  PubMed  Google Scholar 

  185. Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

    CAS  PubMed  Google Scholar 

  186. Galluzzi, L. et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 8, e000337 (2020).

    PubMed  PubMed Central  Google Scholar 

  187. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from and the discussion framework provided by a U54 ROBIN grant from NIH National Cancer Institute (#CA274291) and the Breast Cancer Research Foundation (BCRF).

Author information

Authors and Affiliations

Authors

Contributions

L.G. and S.C.F. conceived the article. L.G. wrote the first version of the manuscript and designed the display items with constructive input from all authors. All authors reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Silvia C. Formenti.

Ethics declarations

Competing interests

L.G. has received research funding from Lytix Biopharma, Onxeo and Promontory; has received honoraria for consulting or advisory roles from AstraZeneca, Boehringer Ingelheim, EduCom, Imvax, Inzen, the Luke Heller TECPR2 Foundation, Noxopharm, OmniSEQ, Onxeo, Promontory, Sotio and The Longevity Labs; and holds stock options in Promontory. S.C.F. has received research funding from Bristol Myers Squibb, Celldex, Eisai, Eli-Lilly, Merck, Regeneron and Varian; and has received honoraria for consulting or advisory roles from Accuray, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Eisai, Elekta, EMD Serono, Genentech, MedImmune, Merck, Nanobiotix, Regeneron, Roche, Varian and View Ray. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks J. Schoenfeld, who co-reviewed with A. Wisdom; R. Weichselbaum; J. Welsh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Aryankalayil, M.J., Coleman, C.N. et al. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 20, 543–557 (2023). https://doi.org/10.1038/s41571-023-00782-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00782-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer