Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Perfect mixing of immiscible macromolecules at fluid interfaces

Abstract

The difficulty of mixing chemically incompatible substances—in particular macromolecules and colloidal particles—is a canonical problem limiting advances in fields ranging from health care to materials engineering1,2,3,4. Although the self-assembly of chemically different moieties has been demonstrated in coordination complexes, supramolecular structures, and colloidal lattices among other systems5,6,7,8,9,10,11,12,13,14,15,16,17,18, the mechanisms of mixing largely rely on specific interfacing of chemically, physically or geometrically complementary objects. Here, by taking advantage of the steric repulsion between brush-like polymers tethered to surface-active species, we obtained long-range arrays of perfectly mixed macromolecules with a variety of polymer architectures and a wide range of chemistries without the need of encoding specific complementarity. The net repulsion arises from the significant increase in the conformational entropy of the brush-like polymers with increasing distance between adjacent macromolecules at fluid interfaces. This entropic-templating assembly strategy enables long-range patterning of thin films on sub-100 nm length scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Miscibility and entropic templating.
Figure 2: Conventional and novel mixing scenarios at a fluid interface.
Figure 3: Spacing control.
Figure 4: Equilibrium and kinetics.

Similar content being viewed by others

References

  1. Freed, K. F. & Dudowicz, J. Influence of monomer molecular structure on the miscibility of polymer blends. Adv. Polymer Sci. 183, 63–126 (2005).

    Article  CAS  Google Scholar 

  2. Higgins, J. S., Lipson, J. E. G. & White, R. P. A simple approach to polymer mixture miscibility. Phil. Trans. R. Soc. A 368, 1009–1025 (2010).

    Article  CAS  Google Scholar 

  3. Wolf, B. A. Making Flory–Huggins Practical: Thermodynamics of polymer-containing mixtures. Adv. Polymer Sci. 238, 1–66 (2011).

    CAS  Google Scholar 

  4. Ganesan, V., Ellison, C. J. & Pryamitsyn, V. Mean-field models of structure and dispersion of polymer-nanoparticle mixtures. Soft Matter 6, 4010–4025 (2010).

    Article  CAS  Google Scholar 

  5. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  6. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  7. Valignat, M., Theodoly, O., Crocker, J., Russel, W. & Chaikin, P. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl Acad. Sci. USA 102, 4225–4229 (2005).

    Article  CAS  Google Scholar 

  8. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–385 (2011).

    Article  CAS  Google Scholar 

  9. Liu, J., Zhang, Y. & Zhang, J. M. Stereocomplexation and monolayer morphologies of a stereoregular poly(methyl methacrylate) mixture formed at the air/water surface. J. Phys. Chem. C 111, 6488–6494 (2007).

    Article  CAS  Google Scholar 

  10. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  11. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  12. Bartlett, P. & Campbell, A. I. Three-dimensional binary superlattices of oppositely charged colloids. Phys. Rev. Lett. 95, 128302–128302 (2005).

    Article  Google Scholar 

  13. Sacana, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  Google Scholar 

  14. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  15. Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature Mater. 8, 781–792 (2009).

    Article  CAS  Google Scholar 

  16. Liu, K. et al. Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010).

    Article  CAS  Google Scholar 

  17. Aiba, N., Sasaki, Y. & Kumaki, J. Strong compression rate dependence of phase separation and stereocomplexation between isotactic and syndiotactic poly(methyl methacrylate)s in a Langmuir monolayer observed by atomic force microscopy. Langmuir 26, 12703–12708 (2010).

    Article  CAS  Google Scholar 

  18. Mayer, A. C. et al. Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells. Adv. Funct. Mater. 19, 1173–1179 (2009).

    Article  CAS  Google Scholar 

  19. Choi, I., Gunawidjaja, R., Suntivich, R., Tsitsilianis, C. & Tsukruk, V. V. Surface behavior of PSn(P2VP-b-PtBA)n heteroarm stars. Macromolecules 43, 6818–6828 (2010).

    Article  CAS  Google Scholar 

  20. Zhang, D., Carignano, M. A. & Szleifer, I. Cluster structure and corralling effect driven by interaction mismatch in two dimensional mixtures. Phys. Rev. Lett. 96, 028701 (2006).

    Article  Google Scholar 

  21. Singh, C. et al. Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. Phys. Rev. Lett. 99, 226106 (2007).

    Article  Google Scholar 

  22. Delaunay, B. N. Sur la sphére, vide. Izv. Akad. Nauk SSSR, Otd. Matemat. Estestv. Nauk 7, 793–800 (1934).

    Google Scholar 

  23. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. T. Samulski for insightful discussions and reviewing the paper. S.S.S., A.V.D., V.V.T. and M.R. acknowledge financial support from the National Science Foundation DMR-0906985, DMR-1004576, DMR-1122483, DMR-1002810 and DMR-0907515.

Author information

Authors and Affiliations

Authors

Contributions

S.S.S. wrote the manuscript and supervised the project, J.Z. and J.A. performed the experiments, D.N. and C.T. synthesized materials, J-M.Y.C. performed Monte Carlo modelling of 2D patterns, A.V.D. and M.R. developed theoretical analysis of interfacial mixing, and K.M. and V.V.T. discussed results and contributed to revisions.

Corresponding author

Correspondence to Sergei S. Sheiko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 914 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheiko, S., Zhou, J., Arnold, J. et al. Perfect mixing of immiscible macromolecules at fluid interfaces. Nature Mater 12, 735–740 (2013). https://doi.org/10.1038/nmat3651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing