Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

Abstract

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte–restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage–commitment process transits from the bone marrow to the remote thymus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ETPs are multipotent lympho-myeloid restricted progenitors.
Figure 2: ETPs have combined T cell, B cell and GM lineage potential.
Figure 3: Absence of pluripotent HSCs in newborn thymus.
Figure 4: The gene expression of ETPs clusters closer to that of candidate TSPs in the bone marrow than to that of other thymic progenitors.
Figure 5: ETPs, IL-7Rα+ LMPPs and CLPs have closely related T cell– and myeloid-lineage transcriptional profiles.
Figure 6: Expression of genes associated with myeloid and lymphoid cells.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Katsura, Y. Redefinition of lymphoid progenitors. Nat. Rev. Immunol. 2, 127–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Donskoy, E. & Goldschneider, I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J. Immunol. 148, 1604–1612 (1992).

    CAS  PubMed  Google Scholar 

  4. Scollay, R., Smith, J. & Stauffer, V. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. Immunol. Rev. 91, 129–157 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Benz, C. & Bleul, C.C. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J. Exp. Med. 202, 21–31 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhandoola, A., von Boehmer, H., Petrie, H.T. & Zuniga-Pflucker, J.C. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 26, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Wada, H. et al. Adult T-cell progenitors retain myeloid potential. Nature 452, 768–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Bell, J.J. & Bhandoola, A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452, 764–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Desanti, G.E. et al. Clonal analysis reveals uniformity in the molecular profile and lineage potential of CCR9+ and CCR9 thymus-settling progenitors. J. Immunol. 186, 5227–5235 10.4049/jimmunol.1002686 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Masuda, K. et al. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages. J. Immunol. 174, 2525–2532 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luc, S., Buza-Vidas, N. & Jacobsen, S.E. Delineating the cellular pathways of hematopoietic lineage commitment. Semin. Immunol. 20, 213–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. 11, 585–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19, 138–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Taub, D.D. & Longo, D.L. Insights into thymic aging and regeneration. Immunol. Rev. 205, 72–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ceredig, R., Bosco, N. & Rolink, A.G. The B lineage potential of thymus settling progenitors is critically dependent on mouse age. Eur. J. Immunol. 37, 830–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Sambandam, A. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat. Immunol. 6, 663–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Feyerabend, T.B. et al. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30, 67–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc. Natl. Acad. Sci. USA 103, 13789–13794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campbell, K.J. et al. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood 116, 3197–3207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Balazs, A.B., Fabian, A.J., Esmon, C.T. & Mulligan, R.C. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107, 2317–2321 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Solar, G.P. et al. Role of c-mpl in early hematopoiesis. Blood 92, 4–10 (1998).

    CAS  PubMed  Google Scholar 

  29. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zlotoff, D.A. et al. CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897–1905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krueger, A., Willenzon, S., Lyszkiewicz, M., Kremmer, E. & Forster, R. CC chemokine receptor (CCR) 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood 115, 1906–1912 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Luc, S. et al. Downregulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential. Blood 111, 3424–3434 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  34. Mansson, R. et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419 (2007).

    Article  PubMed  Google Scholar 

  35. Ehrlich, L.I., Serwold, T. & Weissman, I.L. In vitro assays misrepresent in vivo lineage potentials of murine lymphoid progenitors. Blood 117, 2618–2624 (2011).

    Article  CAS  Google Scholar 

  36. Inlay, M.A. et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 23, 2376–2381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pronk, C.J.H. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. David-Fung, E.S. et al. Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Dev. Biol. 325, 444–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Wendorff, A.A. et al. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33, 671–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Petrie, H.T. & Kincade, P.W. Many roads, one destination for T cell progenitors. J. Exp. Med. 202, 11–13 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chi, A.W. et al. Identification of Flt3CD150 myeloid progenitors in adult mouse bone marrow that harbor T lymphoid developmental potential. Blood 118, 2723–2732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schlenner, S.M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Metzler, M. et al. A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 25, 3093–3103 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Faust, N., Varas, F., Kelly, L.M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96, 719–726 (2000).

    CAS  PubMed  Google Scholar 

  46. Tehranchi, R. et al. Persistent malignant stem cells in del(5q) myelodysplasia in remission. N. Engl. J. Med. 363, 1025–1037 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Sakaguchi (Kumamoto University) for mice with Rag1-driven GFP expression; T. Graf (Center for Genomic Regulation) for mice with expression of enhanced GFP (eGFP) driven by the gene encoding lysozyme M4; S. Cory (Walter and Eliza Hall Institute of Medical Research) for vavP-Mcl1–trangenic mice; M. Reth (Max Planck Institute of Immunobiology) for Cd79atm1(cre)Reth mice; S. Srinivas (University of Oxford) for mice expressing enhanced yellow fluorescent protein from the Rosa26 locus; A. Cumano (Institut Pasteur) for OP9 and OP9-DL1 stromal cells; Biomedical Services at Oxford University for animal support; S. Clark, T. Furey and B. Wu for technical assistance; and E. Zuo and M. Eckart at the Stanford Protein and Nucleic Acid Facility for gene array services. Supported by the Medical Research Council, UK (H4RPLK0 to S.E.W.J. and EU-FP7 EuroSyStem Integrated projects to S.E.W.J., C.B. and A.F.), Leukaemia and Lymphoma Research (C.B., A.F. and A.J.M.), the Crafoord Foundation (A.H.), The George Danielsson Foundation (A.H.) and Swedish Society for Medicine and Swedish Cancer Foundation (A.H.).

Author information

Authors and Affiliations

Authors

Contributions

S.E.W.J. and S.L. designed and conceived of the overall research, analyzed the data and wrote the manuscript, which was subsequently reviewed and approved by all authors; J.B. processed RNA samples; I.C.M. and S.S. analyzed the microarray data; A.J.M., D.A. and A.H. did quantitative and single-cell PCR; A.J.M., S.M. and K.A. did morphology analyses; H.F., S.L. and M.L. sorted cells by flow cytometry; S.L., M.L., T.B.-J., S.D., N.B.-V., H.B., T.C.L., A.D. and S.J.L. contributed to flow cytometry and in vitro culture experiments; S.L., S.D., N.B.-V., P.S.W., T.C.L. and H.B. did in vivo transplantations; T.E. provided assistance in the design and analysis of microarray experiments; C.B., A.F., R.P., M.d.B., I.G. and T.M. contributed advice and input on experimental design; and C.N., A.S.-P. and C.C. generated and provided input on studies of mice expressing eGFP driven by Vwf (encoding the von Willebrand factor homolog).

Corresponding author

Correspondence to Sten Eirik W Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Tables 1–5 and Note (PDF 2354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luc, S., Luis, T., Boukarabila, H. et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol 13, 412–419 (2012). https://doi.org/10.1038/ni.2255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing