Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria

Abstract

Protein synthesis by ribosomes takes place on a linear substrate but at non-uniform speeds. Transient pausing of ribosomes can affect a variety of co-translational processes, including protein targeting and folding1. These pauses are influenced by the sequence of the messenger RNA2. Thus, redundancy in the genetic code allows the same protein to be translated at different rates. However, our knowledge of both the position and the mechanism of translational pausing in vivo is highly limited. Here we present a genome-wide analysis of translational pausing in bacteria by ribosome profiling—deep sequencing of ribosome-protected mRNA fragments3,4,5. This approach enables the high-resolution measurement of ribosome density profiles along most transcripts at unperturbed, endogenous expression levels. Unexpectedly, we found that codons decoded by rare transfer RNAs do not lead to slow translation under nutrient-rich conditions. Instead, Shine–Dalgarno-(SD)6-like features within coding sequences cause pervasive translational pausing. Using an orthogonal ribosome7,8 possessing an altered anti-SD sequence, we show that pausing is due to hybridization between the mRNA and 16S ribosomal RNA of the translating ribosome. In protein-coding sequences, internal SD sequences are disfavoured, which leads to biased usage, avoiding codons and codon pairs that resemble canonical SD sites. Our results indicate that internal SD-like sequences are a major determinant of translation rates and a global driving force for the coding of bacterial genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of translational pausing using ribosome profiling in bacteria.
Figure 2: Relationship between ribosome pausing and internal Shine–Dalgarno sequences.
Figure 3: Pausing of elongating ribosomes due to SD–aSD interaction.
Figure 4: Selection against SD-like sequences and the constraint on protein coding.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The footprint sequencing data are deposited in the Gene Expression Omnibus (GEO) under accession number GSE35641.

References

  1. Kramer, G., Boehringer, D., Ban, N. & Bukau, B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Struct. Mol. Biol. 16, 589–597 (2009)

    Article  CAS  Google Scholar 

  2. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nature Rev. Genet. 12, 32–42 (2011)

    Article  CAS  Google Scholar 

  3. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011)

    Article  CAS  Google Scholar 

  5. Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo . Cell 147, 1295–1308 (2011)

    Article  CAS  Google Scholar 

  6. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl Acad. Sci. USA 71, 1342–1346 (1974)

    Article  ADS  CAS  Google Scholar 

  7. Hui, A. & de Boer, H. A. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli . Proc. Natl Acad. Sci. USA 84, 4762–4766 (1987)

    Article  ADS  CAS  Google Scholar 

  8. Rackham, O. & Chin, J. W. A network of orthogonal ribosomėmRNA pairs. Nature Chem. Biol. 1, 159–166 (2005)

    Article  CAS  Google Scholar 

  9. Varenne, S., Buc, J., Lloubes, R. & Lazdunski, C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 180, 549–576 (1984)

    Article  CAS  Google Scholar 

  10. Pedersen, S. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3, 2895–2898 (1984)

    Article  CAS  Google Scholar 

  11. Sorensen, M. A., Kurland, C. G. & Pedersen, S. Codon usage determines translation rate in Escherichia coli . J. Mol. Biol. 207, 365–377 (1989)

    Article  CAS  Google Scholar 

  12. Andersson, S. G. & Kurland, C. G. Codon preferences in free-living microorganisms. Microbiol. Rev. 54, 198–210 (1990)

    Article  CAS  Google Scholar 

  13. Sorensen, M. A. & Pedersen, S. Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J. Mol. Biol. 222, 265–280 (1991)

    Article  CAS  Google Scholar 

  14. Gutman, G. A. & Hatfield, G. W. Nonrandom utilization of codon pairs in Escherichia coli . Proc. Natl Acad. Sci. USA 86, 3699–3703 (1989)

    Article  ADS  CAS  Google Scholar 

  15. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002)

    Article  CAS  Google Scholar 

  16. Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864–1867 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Chiba, S. et al. Recruitment of a species-specific translational arrest module to monitor different cellular processes. Proc. Natl Acad. Sci. USA 108, 6073–6078 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996)

    Article  CAS  Google Scholar 

  19. Pruss, B. M., Nelms, J. M., Park, C. & Wolfe, A. J. Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J. Bacteriol. 176, 2143–2150 (1994)

    Article  CAS  Google Scholar 

  20. Sezonov, G., Joseleau-Petit, D. & D’Ari, R. Escherichia coli physiology in Luria–Bertani broth. J. Bacteriol. 189, 8746–8749 (2007)

    Article  CAS  Google Scholar 

  21. Chen, H., Bjerknes, M., Kumar, R. & Jay, E. Determination of the optimal aligned spacing between the Shine–Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res. 22, 4953–4957 (1994)

    Article  CAS  Google Scholar 

  22. Weiss, R. B., Dunn, D. M., Dahlberg, A. E., Atkins, J. F. & Gesteland, R. F. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli . EMBO J. 7, 1503–1507 (1988)

    Article  CAS  Google Scholar 

  23. Larsen, B., Wills, N. M., Gesteland, R. F. & Atkins, J. F. rRNA–mRNA base pairing stimulates a programmed −1 ribosomal frameshift. J. Bacteriol. 176, 6842–6851 (1994)

    Article  CAS  Google Scholar 

  24. Wen, J. D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409 (1981)

    Article  CAS  Google Scholar 

  26. Baranov, P. V., Gesteland, R. F. & Atkins, J. F. Release factor 2 frameshifting sites in different bacteria. EMBO Rep. 3, 373–377 (2002)

    Article  CAS  Google Scholar 

  27. Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504–508 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Kolter, R. & Yanofsky, C. Attenuation in amino acid biosynthetic operons. Annu. Rev. Genet. 16, 113–134 (1982)

    Article  CAS  Google Scholar 

  30. Elf, J. & Ehrenberg, M. What makes ribosome-mediated transcriptional attenuation sensitive to amino acid limitation? PLOS Comput. Biol. 1, e2 (2005)

    Article  ADS  Google Scholar 

  31. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  ADS  CAS  Google Scholar 

  32. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 (1974)

    Article  CAS  Google Scholar 

  33. Kanaya, S., Yamada, Y., Kudo, Y. & Ikemura, T. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238, 143–155 (1999)

    Article  CAS  Google Scholar 

  34. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, (suppl. 2)W70–W74 (2008)

    Article  CAS  Google Scholar 

  35. Wu, M. & Eisen, J. A. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9, R151 (2008)

    Article  Google Scholar 

  36. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  CAS  Google Scholar 

  37. Li, W., Jaroszewski, L. & Godzik, A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282–283 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Reuman, D. Burkhardt, C. Jan, C. Gross, J. Elf and members of the Weissman laboratory for discussions; J. Dunn for ribosome profiling data on S. cerevisiae; C. Chu for help with sequencing; and J. Chin for orthogonal ribosome reagents and advice. This research was supported by the Helen Hay Whitney Foundation (to G.W.L.) and by the Howard Hughes Medical Institute (to J.S.W.).

Author information

Authors and Affiliations

Authors

Contributions

G.W.L. and J.S.W. designed the experiments. G.W.L. performed experiments and analysed the data. E.O. provided technical support and preliminary data. G.W.L. and J.S.W. wrote the manuscript.

Corresponding author

Correspondence to Jonathan S. Weissman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-13. (PDF 708 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, GW., Oh, E. & Weissman, J. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012). https://doi.org/10.1038/nature10965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10965

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research