Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inverse design of nanoporous crystalline reticular materials with deep generative models

Abstract

Reticular frameworks are crystalline porous materials that form via the self-assembly of molecular building blocks in different topologies, with many having desirable properties for gas storage, separation, catalysis, biomedical applications and so on. The notable variety of building blocks makes reticular chemistry both promising and challenging for prospective materials design. Here we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder for the generative design of reticular materials. We demonstrate the automated design process with a class of metal–organic framework (MOF) structures and the goal of separating carbon dioxide from natural gas or flue gas. Our model shows high fidelity in capturing MOF structural features. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reticular framework identification and representation, exemplified with MOF structures from the CoRE MOF database26.
Fig. 2: Schematic of the automated reticular framework discovery platform empowered by the SmVAE.
Fig. 3: Illustration of the latent space of the jointly trained SmVAE using PCA analysis conditioned by MOF properties and exemplified sampling of the latent space.
Fig. 4: Reticular framework design and optimization using the SmVAE with natural gas separation (CO2 uptake) as the exemplified target.

Similar content being viewed by others

Data availability

Data for the training of the SmVAE including the augmented two million MOF set and the tabulated textural and gas-separation property data for the randomly selected MOF structures are available at https://github.com/zhenpengyao/Supramolecular_VAE/tree/master/data.

Code availability

Code for the SmVAE is available at https://doi.org/10.24433/CO.8185164.v1.

References

  1. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  Google Scholar 

  2. Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal–organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998).

    Article  Google Scholar 

  3. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    Article  Google Scholar 

  4. Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241–246 (2019).

    Article  Google Scholar 

  5. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    Article  Google Scholar 

  6. Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17, 301–307 (2018).

    Article  Google Scholar 

  7. Hu, Z., Deibert, B. J. & Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014).

    Article  Google Scholar 

  8. Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

    Article  Google Scholar 

  9. Tan, L. L. et al. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches. Chem. Sci. 6, 1640–1644 (2015).

    Article  Google Scholar 

  10. Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014).

    Article  Google Scholar 

  11. Kirkpatrick, P. & Ellis, C. Chemical space. Nature 432, 823 (2004).

    Article  Google Scholar 

  12. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012).

    Article  Google Scholar 

  13. Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019).

    Article  Google Scholar 

  14. Collins, S. P., Daff, T. D., Piotrkowski, S. S. & Woo, T. K. Materials design by evolutionary optimization of functional groups in metal-organic frameworks. Sci. Adv. 2, e1600954 (2016).

    Article  Google Scholar 

  15. Chung, Y. G. et al. In silico discovery of metal–organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci. Adv. 2, e1600909 (2016).

    Article  Google Scholar 

  16. Fernandez, M., Boyd, P. G., Daff, T. D., Aghaji, M. Z. & Woo, T. K. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture. J. Phys. Chem. Lett. 5, 3056–3060 (2014).

    Article  Google Scholar 

  17. Moghadam, P. Z. et al. Structure–mechanical stability relations of metal–organic frameworks via machine learning. Matter 1, 219–234 (2019).

    Article  Google Scholar 

  18. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  Google Scholar 

  19. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014—Conference Track Proceedings (International Conference on Learning Representations, 2014).

  20. Goodfellow, I. J. et al. Generative adversarial networks. Preprint at https://arxiv.org/abs/1406.2661 (2014).

  21. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article  Google Scholar 

  22. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article  Google Scholar 

  23. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In Proc. 35th International Conference on Machine Learning ICML 2018 Vol. 5 3632–3648 (IMLS, 2018).

  24. Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370–1384 (2019).

    Article  Google Scholar 

  25. Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural networks. Sci. Adv. 6, eaax9324 (2020).

    Article  Google Scholar 

  26. Chung, Y. G. et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J. Chem. Eng. Data https://doi.org/10.1021/acs.jced.9b00835 (2019).

  27. Duvenaud, D. et al. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst. 2, 2224–2232 (2015).

    Google Scholar 

  28. Krenn, M., Hase, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn. Sci. Technol. https://doi.org/10.1088/2632-2153/aba947 (2020).

  29. Li, P. et al. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 356, 624–627 (2017).

    Article  Google Scholar 

  30. Jain, A. et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  31. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, (2013).

  32. Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).

    Article  Google Scholar 

  33. Ziletti, A., Kumar, D., Scheffler, M. & Ghiringhelli, L. M. Insightful classification of crystal structures using deep learning. Nat. Commun. 9, 2775 (2018).

    Article  Google Scholar 

  34. Ryan, K., Lengyel, J. & Shatruk, M. Crystal structure prediction via deep learning. J. Am. Chem. Soc. 140, 10158–10168 (2018).

    Article  Google Scholar 

  35. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article  Google Scholar 

  36. Park, C. W. & Wolverton, C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys. Rev. Mater. 4, 063801 (2020).

    Article  Google Scholar 

  37. Eon, J. G. Topological features in crystal structures: a quotient graph assisted analysis of underlying nets and their embeddings. Acta Crystallogr. A 72, 268–293 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  38. Delgado-Friedrichs, O., Hyde, S. T., O’Keeffe, M. & Yaghi, O. M. Crystal structures as periodic graphs: the topological genome and graph databases. Struct. Chem. 28, 39–44 (2017).

    Article  Google Scholar 

  39. O’Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    Article  Google Scholar 

  40. Furukawa, H., Kim, J., Ockwig, N. W., O’Keeffe, M. & Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal–organic frameworks and polyhedra. J. Am. Chem. Soc. 130, 11650–11661 (2008).

    Article  Google Scholar 

  41. Bucior, B. J. et al. Identification schemes for metal–organic frameworks to enable rapid search and cheminformatics analysis. Cryst. Growth Des. 19, 6682–6697 (2019).

    Article  Google Scholar 

  42. Anderson, R. & Gómez-Gualdrón, D. A. Increasing topological diversity during computational “synthesis” of porous crystals: how and why. CrystEngComm 21, 1653–1665 (2019).

    Article  Google Scholar 

  43. Ghersi, D. & Singh, M. molBLOCKS: decomposing small molecule sets and uncovering enriched fragments. Bioinformatics 30, 2081–2083 (2014).

    Article  Google Scholar 

  44. Colón, Y. J., Gómez-Gualdrón, D. A. & Snurr, R. Q. Topologically guided, automated construction of metal–organic frameworks and their evaluation for energy-related applications. Cryst. Growth Des. 17, 5801–5810 (2017).

    Article  Google Scholar 

  45. Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392 (2019).

    Article  MATH  Google Scholar 

  46. Fu, H. et al. Cyclical annealing schedule: a simple approach to mitigating. In Proc. 2019 Conference of the North 240–250 (Association for Computational Linguistics, 2019); https://doi.org/10.18653/v1/N19-1021

  47. Kingma, D. P., Rezende, D. J., Mohamed, S. & Welling, M. Semi-supervised learning with deep generative models. Adv. Neural Inf. Process. Syst. 4, 3581–3589 (2014).

    Google Scholar 

  48. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2005); https://doi.org/10.7551/mitpress/3206.001.0001

  49. Deria, P. et al. Ultraporous, water stable, and breathing zirconium-based metal–organic frameworks with ftw topology. J. Am. Chem. Soc. 137, 13183–13190 (2015).

    Article  Google Scholar 

  50. Mondloch, J. E. et al. Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013).

    Article  Google Scholar 

  51. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  Google Scholar 

  52. Gu, Z. Y., Jiang, J. Q. & Yan, X. P. Fabrication of isoreticular metal–organic framework coated capillary columns for high-resolution gas chromatographic separation of persistent organic pollutants. Anal. Chem. 83, 5093–5100 (2011).

    Article  Google Scholar 

  53. Coley, C. W., Rogers, L., Green, W. H. & Jensen, K. F. SCScore: synthetic complexity learned from a reaction corpus. J. Chem. Inf. Model. 58, 252–261 (2018).

    Article  Google Scholar 

  54. Herm, Z. R., Krishna, R. & Long, J. R. CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc). Micropor. Mesopor. Mater. 151, 481–487 (2012).

    Article  Google Scholar 

  55. Xiang, S. et al. Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 3, 954 (2012).

    Article  Google Scholar 

  56. Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011).

    Article  Google Scholar 

  57. Cavenati, S., Grande, C. A. & Rodrigues, A. E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004).

    Article  Google Scholar 

  58. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  Google Scholar 

  59. Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    Article  Google Scholar 

  60. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 149, 134–141 (2012).

    Article  Google Scholar 

  61. Bae, Y. S., Yazayd’n, A. Ö. & Snurr, R. Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir 26, 5475–5483 (2010).

    Article  Google Scholar 

  62. Biovia, D. S. Materials Studio (San Diego Dassault Systèmes, 2019).

  63. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  64. Collins, S. P. & Woo, T. K. Split-charge equilibration parameters for generating rapid partial atomic charges in metal–organic frameworks and porous polymer networks for high-throughput screening. J. Phys. Chem. C 121, 903–910 (2017).

    Article  Google Scholar 

  65. Campañá, C., Mussard, B. & Woo, T. K. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. J. Chem. Theory Comput. 5, 2866–2878 (2009).

    Article  Google Scholar 

  66. Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016).

    Article  Google Scholar 

  67. Martin, M. G. & Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102, 2569–2577 (1998).

    Article  Google Scholar 

  68. Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. Preprint at https://arxiv.org/abs/1412.3555 (2014).

  69. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Preprint at https://arxiv.org/abs/1912.01703 (2019).

  70. Landrum, G. RDKit: Open-source Cheminformatics Software (RDKit, 2006); http://www.rdkit.org

  71. Hamon, L., Jolimaître, E. & Pirngruber, G. D. CO2 and CH4 separation by adsorption using Cu-BTC metal–organic framework. Ind. Eng. Chem. Res. 49, 7497–7503 (2010).

    Article  Google Scholar 

  72. Liu, H. et al. A hybrid absorption–adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014).

    Article  Google Scholar 

  73. Millward, A. R. & Yaghi, O. M. Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005).

    Article  Google Scholar 

  74. Li, J., Li, J., Yang, J. & Li, L. Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2. J. Energy Chem. 23, 453–460 (2014).

    Article  Google Scholar 

  75. Myers, A. L. & Prausnitz, J. M. Thermodynamics of mixed‐gas adsorption. AIChE J. 11, 121–127 (1965).

    Article  Google Scholar 

  76. Simon, C. M., Smit, B. & Haranczyk, M. PyIAST: ideal adsorbed solution theory (IAST) Python package. Comp. Phys. Commun. 200, 364–380 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Z.Y., N.S.B., B.J.B., S.G.H.K., O.K.F., R.Q.S. and A.A.-G. were supported as part of the Nanoporous Materials Genome Center by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-FG02-17ER16362. Funding for T.B., S.P.C. and T.K.W. were provided by NSERC. Computations were made on the supercomputer ‘beluga’ from École de technologie supérieure, managed by Calcul Québec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), the ministère de l’Économie, de la science et de l’innovation du Québec (MESI) and the Fonds de recherche du Québec - Nature et technologies (FRQ-NT). This research was supported in part through the computational resources and staff contributions provided for the Quest high-performance computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. A.A.-G. is a Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. conceived the overall project. Z.Y. B.J.B. and R.Q.S. designed the reticular framework representation approach. N.S.B. and R.Q.S. conducted the MOF property determination calculations. Z.Y. and B.S.-L. developed the deep learning variational autoencoder. S.P.C., T.B. and T.K.W. did the charge calculations for the framework charges for property simulations. A.A.-G. led the project and provided the overall directions. All authors participated in preparing the manuscript.

Corresponding authors

Correspondence to Zhenpeng Yao, Randall Q. Snurr or Alán Aspuru-Guzik.

Ethics declarations

Competing interests

O.K.F. and R.Q.S. have a financial interest in NuMat Technologies, a startup company that is seeking to commercialize MOFs.

Additional information

Peer review information Nature Machine Intelligence thanks Jihan Kim, Joshua Schrier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–12, structures and reference.

Reporting Summary

Supplementary Data 1

Crystallographic information file: GMOF-1.cif.

Supplementary Data 2

Crystallographic information file: GMOF-2.cif.

Supplementary Data 3

Crystallographic information file: GMOF-3.cif.

Supplementary Data 4

Crystallographic information file: GMOF-4.cif.

Supplementary Data 5

Crystallographic information file: GMOF-5.cif.

Supplementary Data 6

Crystallographic information file: GMOF-4.cif.

Supplementary Data 7

Crystallographic information file: GMOF-4.cif.

Supplementary Data 8

Crystallographic information file: GMOF-4.cif.

Supplementary Data 9

Crystallographic information file: GMOF-4.cif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Sánchez-Lengeling, B., Bobbitt, N.S. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat Mach Intell 3, 76–86 (2021). https://doi.org/10.1038/s42256-020-00271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-020-00271-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing