Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Bone metabolism

Serine synthesis promotes bone degradation

Bone resorption by osteoclasts requires tight control, as overactivation reduces bone mass and strength. Stegen et al. demonstrate that α-ketoglutarate produced during serine synthesis promotes osteoclast development via metabolic–epigenetic coupling and could be a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Serine metabolism promotes osteoclastogenesis through epigenetic remodelling.

References

  1. Sims, N. A. & Martin, T. J. Annu. Rev. Physiol. 82, 507–529 (2020).

    Article  PubMed  CAS  Google Scholar 

  2. Raisz, L. G. J. Clin. Invest. 115, 3318–3325 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Black, D. M. et al. N. Engl. J. Med. 383, 743–753 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Miller, P. D. et al. Bone 43, 222–229 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Ledesma-Colunga, M. G., Passin, V., Lademann, F., Hofbauer, L. C. & Rauner, M. Curr. Osteoporos. Rep. https://doi.org/10.1007/s11914-023-00825-3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stegen, S., Moermans, K., Stockmans, I., Thienpont, B. & Carmeliet, G. Nat. Metab. https://doi.org/10.1038/s42255-023-00948-y (2024).

  7. Li, B. et al. FASEB J. 34, 11058–11067 (2020).

    Article  PubMed  CAS  Google Scholar 

  8. Park-Min, K. H. Semin. Immunopathol. 41, 565–572 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yang, M. & Vousden, K. H. Nat. Rev. Cancer 16, 650–662 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. Takayanagi, H. et al. Dev. Cell 3, 889–901 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Chaneton, B. et al. Nature 491, 458–462 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pacold, M. E. et al. Nat. Chem. Biol. 12, 452–458 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of R.C.R. is supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK099134) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR077533) of the National Institutes of Health as well as the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development (BX003724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Riddle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riddle, R.C., Choquette, G.M. Serine synthesis promotes bone degradation. Nat Metab 6, 8–9 (2024). https://doi.org/10.1038/s42255-023-00949-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00949-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research