Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acidity of surface-infiltrated binary oxides as a sensitive descriptor of oxygen exchange kinetics in mixed conducting oxides

Abstract

Improving the kinetics of O2 reduction on oxide surfaces is critical in many energy and fuel conversion technologies. Here we show that the acidity scale for binary oxides is a powerful descriptor for tuning and predicting oxygen surface exchange kinetics on mixed conducting oxides. By infiltrating a selection of binary oxides from strongly basic (Li2O) to strongly acidic (SiO2) onto the surface of Pr0.1Ce0.9O2-δ samples, it was possible to vary the chemical surface exchange coefficient kchem by 6 orders of magnitude, with basic oxides such as Li2O increasing kchem by nearly 1,000 times, with surface concentrations as low as 50 ppm impacting kchem. Strikingly, although the pre-exponential of kchem scales linearly with the acidity of the infiltrated binary oxide, there is nearly no change in the activation energy. The origin of these dramatic changes is proposed to arise from the systematic increase in electron concentration at the Pr0.1Ce0.9O2-δ surface with the decreasing acidity of the infiltrated binary oxide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acidity scale for binary oxides, as proposed by Smith34.
Fig. 2: Microstructural analysis of the infiltrated porous Pr0.1Ce0.9O2-δ samples.
Fig. 3: Oxygen surface exchange kinetics as a function of acidity.
Fig. 4: Li concentration dependence of exchange rate and electrical conductivity.
Fig. 5: Conductivity and work-function dependence on acidity and the relation to electronic structure.

Similar content being viewed by others

Data availability

The datasets of conductivity relaxation analysed during the current study are available in the source files of this manuscript. All other data are available within the paper and its Supplementary Information files. Source data are provided with this paper.

References

  1. Chueh, W. C. et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330, 1797–1801 (2010).

    CAS  PubMed  Google Scholar 

  2. Kilner, J. A. & Burriel, M. Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 44, 365–393 (2014).

    CAS  Google Scholar 

  3. Laguna-Bercero, M. A. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012).

    CAS  Google Scholar 

  4. Wei, Y., Yang, W., Caro, J. & Wang, H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem. Eng. J. 220, 185–203 (2013).

    CAS  Google Scholar 

  5. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    CAS  PubMed  Google Scholar 

  6. Montini, T., Melchionna, M., Monai, M. & Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987–6041 (2016).

    CAS  PubMed  Google Scholar 

  7. Wang, C., Yin, L., Zhang, L., Xiang, D. & Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010).

    CAS  PubMed  Google Scholar 

  8. Barsan, N., Koziej, D. & Weimar, U. Metal oxide-based gas sensor research: how to? Sens. Actuators B 121, 18–35 (2007).

    CAS  Google Scholar 

  9. Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

    PubMed  Google Scholar 

  10. Akinaga, H. & Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237–2251 (2010).

    CAS  Google Scholar 

  11. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).

    CAS  PubMed  Google Scholar 

  12. Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G. & Barnett, S. A. A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016).

    CAS  Google Scholar 

  13. Rupp, G. M., Kubicek, M., Opitz, A. K. & Fleig, J. In situ impedance analysis of oxygen exchange on growing La0.6Sr0.4CoO3-δ thin films. ACS Appl. Energy Mater. 1, 4522–4535 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaube, M., Merkle, R. & Maier, J. Oxygen exchange kinetics on systematically doped ceria: a pulsed isotope exchange study. J. Mater. Chem. A 7, 21854–21866 (2019).

    CAS  Google Scholar 

  15. Kubicek, M., Limbeck, A., Frömling, T., Hutter, H. & Fleig, J. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-δ thin film electrodes. J. Electrochem. Soc. 158, B727–B734 (2011).

    CAS  Google Scholar 

  16. Yokokawa, H., Tu, H., Iwanschitz, B. & Mai, A. Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources 182, 400–412 (2008).

    CAS  Google Scholar 

  17. Perry, N. H. & Ishihara, T. Roles of bulk and surface chemistry in the oxygen exchange kinetics and related properties of mixed conducting perovskite oxide electrodes. Materials 9, 858 (2016).

    PubMed Central  Google Scholar 

  18. Chen, D. et al. Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2–x. Nat. Catal. 3, 116–124 (2020).

    CAS  Google Scholar 

  19. Cao, Y., Gadre, M. J., Ngo, A. T., Adler, S. B. & Morgan, D. D. Factors controlling surface oxygen exchange in oxides. Nat. Commun. 10, 1346 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Wang, L., Merkle, R., Mastrikov, Y. A., Kotomin, E. A. & Maier, J. Oxygen exchange kinetics on solid oxide fuel cell cathode materials—general trends and their mechanistic interpretation. J. Mater. Res. 27, 2000–2008 (2012).

    CAS  Google Scholar 

  21. Jung, W. C. & Tuller, H. L. A new model describing solid oxide fuel cell cathode kinetics: model thin film SrTi1–xFexO3-δ mixed conducting oxides—a case study. Adv. Energy Mater. 1, 1184–1191 (2011).

    CAS  Google Scholar 

  22. Jung, W. & Tuller, H. L. Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy Environ. Sci. 5, 5370–5378 (2012).

    CAS  Google Scholar 

  23. Opitz, A. K. et al. The chemical evolution of the La0.6Sr0.4CoO3-δ surface under SOFC operating conditions and its implications for electrochemical oxygen exchange activity. Top. Catal. 61, 2129–2141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rupp, G. M., Opitz, A. K., Nenning, A., Limbeck, A. & Fleig, J. Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nat. Mater. 16, 640–645 (2017).

    CAS  PubMed  Google Scholar 

  25. Li, M. et al. Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3-δ by strontium carbonate. Phys. Chem. Chem. Phys. 19, 503–509 (2017).

    CAS  Google Scholar 

  26. Mutoro, E., Crumlin, E. J., Biegalski, M. D., Christen, H. M. & Shao-Horn, Y. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells. Energy Environ. Sci. 4, 3689–3696 (2011).

    CAS  Google Scholar 

  27. Wagner, S. F. et al. Enhancement of oxygen surface kinetics of SrTiO3 by alkaline earth metal oxides. Solid State Ion. 177, 1607–1612 (2006).

    CAS  Google Scholar 

  28. Argirusis, C. et al. Enhancement of oxygen surface exchange kinetics of SrTiO3 by alkaline earth metal oxides. Phys. Chem. Chem. Phys. 7, 3523–3525 (2005).

    CAS  PubMed  Google Scholar 

  29. Cheng, Y. et al. Enhancing oxygen exchange activity by tailoring perovskite surfaces. J. Phys. Chem. Lett. 10, 4082–4088 (2019).

    CAS  PubMed  Google Scholar 

  30. Paige, J. M. et al. Surface modification of SOFC cathodes by Co, Ni, and Pd oxides. Solid State Ion. 341, 115051 (2019).

    CAS  Google Scholar 

  31. Tsvetkov, N., Lu, Q., Sun, L., Crumlin, E. J. & Yildiz, B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat. Mater. 15, 1010–1016 (2016).

    CAS  PubMed  Google Scholar 

  32. Sasaki, K. et al. Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance. J. Power Sources 196, 9130–9140 (2011).

    CAS  Google Scholar 

  33. Chen, T., Harrington, G. F., Masood, J., Sasaki, K. & Perry, N. H. Emergence of rapid oxygen surface exchange kinetics during in situ crystallization of mixed conducting thin film oxides. ACS Appl. Mater. Interfaces 11, 9102–9116 (2019).

    CAS  PubMed  Google Scholar 

  34. Smith, D. W. An acidity scale for binary oxides. J. Chem. Educ. 64, 480–481 (1987).

    CAS  Google Scholar 

  35. Ganeshananthan, R. & Virkar, A. V. Measurement of surface exchange coefficient on porous La0.6Sr0.4CoO3-δ samples by conductivity relaxation. J. Electrochem. Soc. 152, A1620–A1628 (2005).

    CAS  Google Scholar 

  36. Cabot, A. et al. Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens. Actuators B 70, 87–100 (2000).

    CAS  Google Scholar 

  37. Egger, A., Bucher, E., Yang, M. & Sitte, W. Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3-δ and La0.6Sr0.4CoO3-δ. Solid State Ion. 225, 55–60 (2012).

    CAS  Google Scholar 

  38. Miessler, G. L., Fischer, P. J. & Tarr, D. A. Inorganic Chemistry (Pearson, 1991).

  39. Lu, Q. et al. Surface defect chemistry and electronic structure of Pr0.1Ce0.9O2-δ revealed in operando. Chem. Mater. 30, 2600–2606 (2018).

    CAS  Google Scholar 

  40. Chueh, W. C. et al. Highly enhanced concentration and stability of reactive Ce3+ on doped CeO2 surface revealed in operando. Chem. Mater. 24, 1876–1882 (2012).

    CAS  Google Scholar 

  41. Portier, J., Poizot, P., Tarascon, J.-M., Campet, G. & Subramanian, M. A. Acid–base behavior of oxides and their electronic structure. Solid State Sci. 5, 695–699 (2003).

    CAS  Google Scholar 

  42. Bishop, S. R., Stefanik, T. S. & Tuller, H. L. Defects and transport in PrxCe1–xO2-δ: composition trends. J. Mater. Res. 27, 2009–2016 (2012).

    CAS  Google Scholar 

  43. De Souza, R. A. Limits to the rate of oxygen transport in mixed-conducting oxides. J. Mater. Chem. A 5, 20334–20350 (2017).

    Google Scholar 

  44. Guo, X. & Waser, R. Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog. Mater. Sci. 51, 151–210 (2006).

    CAS  Google Scholar 

  45. Mebane, D. S. & De Souza, R. A. A generalised space–charge theory for extended defects in oxygen-ion conducting electrolytes: from dilute to concentrated solid solutions. Energy Environ. Sci. 8, 2935–2940 (2015).

    CAS  Google Scholar 

  46. Zhao, L., Perry, N. H., Daio, T., Sasaki, K. & Bishop, S. R. Improving the Si impurity tolerance of Pr0.1Ce0.9O2-δ SOFC electrodes with reactive surface additives. Chem. Mater. 27, 3065–3070 (2015).

    CAS  Google Scholar 

  47. Grubel, K., Brennessel, W. W., Mercado, B. Q. & Holland, P. L. Alkali metal control over N–N cleavage in iron complexes. J. Am. Chem. Soc. 136, 16807–16816 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jinkawa, T., Sakai, G., Tamaki, J., Miura, N. & Yamazoe, N. Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides. J. Mol. Catal. A 155, 193–200 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was primarily supported by the US Department of Energy (DOE), National Energy Technology Laboratory (NETL), Office of Fossil Energy under Award no. DE-FE0031668—Self-Regulating Surface Chemistry for More Robust Highly Durable Solid Oxide Fuel Cell Cathodes. Supplementary support was provided by the US DOE, Office of Science, Basic Energy Sciences (BES), under Award no. DE-SC0002633—Chemomechanics of Far-From-Equilibrium Interfaces (XPS studies). G.F.H. acknowledges support from a Kakenhi Grant-in-Aid for Encouragement of Young Scientists (B) Award (no. JP18K13992) (TEM studies). Thanks go to A. Grimaud and D. Kalaev for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.N. suggested the original idea. C.N. and H.L.T. designed the experimental protocol. C.N. prepared the samples, built the experimental set-up and performed the conductivity relaxation measurements. G.F.H. prepared the lamellae for TEM, performed the TEM measurements and computed the defect model used to interpret the results. C.T. prepared and measured the samples by XPS. C.T. and B.Y. performed the analysis of the XPS measurements and interpreted the results. T.D. performed the Raman spectroscopy measurements and interpreted the results. H.L.T. supervised the work and provided guidance throughout the project. C.N. and H.L.T. wrote the manuscript. All the co-authors discussed the results and helped to revise the manuscript.

Corresponding author

Correspondence to Clement Nicollet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9, Figs. 1–11, Equations 1–8 and Table 1.

Source data

Source Data Fig. 3

Unprocessed conductivity relaxation profiles for all infiltrated samples.

Source Data Fig. 4

Unprocessed conductivity relaxation profiles for each increment of Li infiltration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicollet, C., Toparli, C., Harrington, G.F. et al. Acidity of surface-infiltrated binary oxides as a sensitive descriptor of oxygen exchange kinetics in mixed conducting oxides. Nat Catal 3, 913–920 (2020). https://doi.org/10.1038/s41929-020-00520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00520-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing