Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance flexible nanoscale transistors based on transition metal dichalcogenides

Abstract

Two-dimensional (2D) semiconducting transition metal dichalcogenides could be used to build high-performance flexible electronics. However, flexible field-effect transistors (FETs) based on such materials are typically fabricated with channel lengths on the micrometre scale, not benefitting from the short-channel advantages of 2D materials. Here, we report flexible nanoscale FETs based on 2D semiconductors; these are fabricated by transferring chemical-vapour-deposited transition metal dichalcogenides from rigid growth substrates together with nano-patterned metal contacts, using a polyimide film, which becomes the flexible substrate after release. Transistors based on monolayer molybdenum disulfide (MoS2) are created with channel lengths down to 60 nm and on-state currents up to 470 μA μm−1 at a drain–source voltage of 1 V, which is comparable to the performance of flexible graphene and crystalline silicon FETs. Despite the low thermal conductivity of the flexible substrate, we find that heat spreading through the metal gate and contacts is essential to reach such high current densities. We also show that the approach can be used to create flexible FETs based on molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transfer process for 2D monolayers with contacts.
Fig. 2: Flexible FETs with TMDs.
Fig. 3: Nanoscale MoS2 FETs.
Fig. 4: Benchmarking flexible FETs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of the study are available from the corresponding author upon reasonable request.

References

  1. He, J., Nuzzo, R. G. & Rogers, J. A. Inorganic materials and assembly techniques for flexible and stretchable electronics. Proc. IEEE 103, 619–632 (2015).

    Article  Google Scholar 

  2. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  Google Scholar 

  3. Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1, 30–39 (2018).

    Article  Google Scholar 

  4. Salvatore, G. A. et al. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 7, 8809–8815 (2013).

    Article  Google Scholar 

  5. Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).

    Article  Google Scholar 

  6. Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10-nm channel length. Nano Lett. 16, 7798–7806 (2016).

    Article  Google Scholar 

  7. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  Google Scholar 

  8. Gusakova, J. et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ‐2e method). Phys. Status Solidi (a) 214, 1700218 (2017).

    Article  Google Scholar 

  9. Ryou, J., Kim, Y.-S., Santosh, K. & Cho, K. Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci. Rep. 6, 29184 (2016).

    Article  Google Scholar 

  10. Kshirsagar, C. U. et al. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 10, 8457–8464 (2016).

    Article  Google Scholar 

  11. Illarionov, Y. Y. et al. Annealing and encapsulation of CVD-MoS2 FETs with 1010 on/off current ratio. In Proc. 2018 76th Device Research Conference (DRC) https://doi.org/10.1109/DRC.2018.8442242 (IEEE, 2018).

  12. Münzenrieder, N., Cantarella, G. & Petti, L. Fabrication and AC performance of flexible indium–gallium–zinc–oxide thin-film transistors. ECS Trans. 90, 55–63 (2019).

    Article  Google Scholar 

  13. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    Article  Google Scholar 

  14. Ma, D. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 8, 3662–3672 (2015).

    Article  Google Scholar 

  15. Zhang, T. et al. Clean transfer of 2D transition metal dichalcogenides using cellulose acetate for atomic resolution characterizations. ACS Appl. Nano Mater. 2, 5320–5328 (2019).

    Article  Google Scholar 

  16. Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

    Article  Google Scholar 

  17. Chang, H. Y. et al. Large‐area monolayer MoS2 for flexible low‐power RF nanoelectronics in the GHz regime. Adv. Mater. 28, 1818–1823 (2016).

    Article  Google Scholar 

  18. Das, S., Gulotty, R., Sumant, A. V. & Roelofs, A. All two-dimensional, flexible, transparent and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014).

    Article  Google Scholar 

  19. Podzorov, V., Gershenson, M., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).

    Article  Google Scholar 

  20. Qiu, H. et al. Simultaneous optical tuning of hole and electron transport in ambipolar WSe2 interfaced with a bicomponent photochromic layer: from high‐mobility transistors to flexible multilevel memories. Adv. Mater. 32, 1907903 (2020).

    Article  Google Scholar 

  21. Pu, J. et al. Highly flexible and high‐performance complementary inverters of large‐area transition metal dichalcogenide monolayers. Adv. Mater. 28, 4111–4119 (2016).

    Article  Google Scholar 

  22. Rai, A. et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett. 15, 4329–4336 (2015).

    Article  Google Scholar 

  23. McClellan, C. J., Yalon, E., Smithe, K. K., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Article  Google Scholar 

  24. English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  Google Scholar 

  25. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  26. Fortunato, E., Barquinha, P. & Martins, R. Oxide semiconductor thin‐film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012).

    Article  Google Scholar 

  27. Smithe, K. K., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2017).

    Article  Google Scholar 

  28. Smithe, K. K., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  Google Scholar 

  29. Smithe, K. K. et al. Nanoscale heterogeneities in monolayer MoSe2 revealed by correlated scanning probe microscopy and tip-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 1, 572–579 (2018).

    Article  Google Scholar 

  30. Chen, J. et al. Plasmon-resonant enhancement of photocatalysis on monolayer WSe2. ACS Photonics 6, 787–792 (2019).

    Article  Google Scholar 

  31. George, M., Bao, Q., Sorensen, I., Glaunsinger, W. & Thundat, T. Thermally induced changes in the resistance, microstructure and adhesion of thin gold films on Si/SiO2 substrates. J. Vac. Sci. Technol. A 8, 1491–1497 (1990).

    Article  Google Scholar 

  32. Shinde, S. M. et al. Surface‐functionalization‐mediated direct transfer of molybdenum disulfide for large‐area flexible devices. Adv. Funct. Mater. 28, 1706231 (2018).

    Article  Google Scholar 

  33. Daus, A. et al. Metal‐halide perovskites for gate dielectrics in field‐effect transistors and photodetectors enabled by PMMA lift‐off process. Adv. Mater. 30, 1707412 (2018).

    Article  Google Scholar 

  34. Bhanu, U., Islam, M. R., Tetard, L. & Khondaker, S. I. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 4, 5575 (2014).

    Article  Google Scholar 

  35. Somvanshi, D., Ber, E., Bailey, C. S., Pop, E. & Yalon, E. Improved current density and contact resistance in bilayer MoSe2 field effect transistors by AlOx capping. ACS Appl. Mater. Interfaces 12, 36355–36361 (2020).

    Article  Google Scholar 

  36. Knobelspies, S. et al. Geometry-based tunability enhancement of flexible thin-film varactors. IEEE Electron Device Lett. 38, 1117–1120 (2017).

    Article  Google Scholar 

  37. Datye, I. M. et al. Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements. 2D Mater. 6, 011004 (2019).

    Article  Google Scholar 

  38. Scholten, K. & Meng, E. Electron-beam lithography for polymer bioMEMS with submicron features. Microsyst. Nanoeng. 2, 16053 (2016).

    Article  Google Scholar 

  39. Smithe, K. K., English, C. D., Suryavanshi, S. V. & Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 18, 4516–4522 (2018).

    Article  Google Scholar 

  40. Münzenrieder, N. et al. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100-MHz operation. Appl. Phys. Lett. 105, 263504 (2014).

    Article  Google Scholar 

  41. McClellan, C. J. et al. 2D Device Trends http://2d.stanford.edu (accessed 14 April 2021).

  42. Lan, Y. et al. Flexible graphene field-effect transistors with extrinsic fmax of 28 GHz. IEEE Electron Device Lett. 39, 1944–1947 (2018).

    Article  Google Scholar 

  43. Shahrjerdi, D. et al. Advanced flexible CMOS integrated circuits on plastic enabled by controlled spalling technology. In Proc. 2012 International Electron Devices Meeting (IEDM) 5.1.1–5.1.4 (IEEE, 2012).

  44. Kwon, H. et al. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 7, 1137–1145 (2014).

    Article  Google Scholar 

  45. Chang, H.-Y. et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

    Article  Google Scholar 

  46. Yoon, J. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013).

    Google Scholar 

  47. Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    Article  Google Scholar 

  48. Yoo, G. et al. Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics. Nano Res. 10, 767–775 (2017).

    Article  Google Scholar 

  49. Song, W. G. et al. High‐performance flexible multilayer MoS2 transistors on solution‐based polyimide substrates. Adv. Funct. Mater. 26, 2426–2434 (2016).

    Article  Google Scholar 

  50. Ma, J., Choi, K.-Y., Kim, S. H., Lee, H. & Yoo, G. All polymer encapsulated, highly-sensitive MoS2 phototransistors on flexible PAR substrate. Appl. Phys. Lett. 113, 013102 (2018).

    Article  Google Scholar 

  51. Amani, M., Burke, R. A., Proie, R. M. & Dubey, M. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 26, 115202 (2015).

    Article  Google Scholar 

  52. Woo, Y. et al. Large‐area CVD‐grown MoS2 driver circuit array for flexible organic light‐emitting diode display. Adv. Electron. Mater. 4, 1800251 (2018).

    Article  Google Scholar 

  53. Park, Y. J. et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13, 3023–3030 (2019).

    Article  Google Scholar 

  54. Zhai, Y., Mathew, L., Rao, R., Xu, D. & Banerjee, S. K. High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12, 5609–5615 (2012).

    Article  Google Scholar 

  55. Park, S. et al. Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37, 512–515 (2016).

    Article  Google Scholar 

  56. Yeh, C.-H. et al. Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 8, 7663–7670 (2014).

    Article  Google Scholar 

  57. Wang, M. et al. High performance gigahertz flexible radio frequency transistors with extreme bending conditions. In Proc. 2019 IEEE International Electron Devices Meeting (IEDM) 8.2.1–8.2.4 (IEEE, 2019).

  58. Münzenrieder, N. et al. Focused ion beam milling for the fabrication of 160-nm channel length IGZO TFTs on flexible polymer substrates. Flex. Print. Electron. 5, 015007 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

A.D. is in part supported by the Swiss National Science Foundation’s Early Postdoc.Mobility fellowship (grant no. P2EZP2_181619) and in part by Beijing Institute of Collaborative Innovation (BICI). R.W.G., C.S.B. and K.S. acknowledge the National Science Foundation (NSF) Graduate Research Fellowship. K.S. also acknowledges support from the Stanford Graduate Fellowship. We thank the Stanford Nanofabrication Facility and Stanford Nano Shared Facilities for enabling device fabrication and characterization, funded under NSF award no. ECCS-1542152. E.P. and S.V. acknowledge support from the Stanford SystemX Alliance.

Author information

Authors and Affiliations

Authors

Contributions

A.D. conceived the work and performed the device fabrication and characterization. A.D. and S.V. developed the TMD transfer process. R.W.G. performed the MoS2 CVD growth and C.S.B. the WSe2 and MoSe2 CVD growths. V.C. carried out the electron beam lithography and atomic-force microscopy. A.D. and K.S. performed optical material analysis with help from K.B. H.R.L. carried out scanning electron microscopy. C.K. set up numerical current spreading simulations and thermal simulations with E.P. A.D. analysed all data and wrote the manuscript with help from V.C., C.K. and E.P. All authors revised and commented on the manuscript. E.P. supervised the work.

Corresponding author

Correspondence to Eric Pop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Henry Medina and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–17 with Supplementary Discussion, Figs. 1–25, Tables 1–3 and additional references 59–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daus, A., Vaziri, S., Chen, V. et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat Electron 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00598-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing