Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantized conductance in a one-dimensional ballistic oxide nanodevice

Abstract

The electric-field effect control of two-dimensional electron gases (2-DEGs) has allowed nanoscale electron quantum transport to be explored in semiconductors. Structures based on transition metal oxides have electronic states that favour the emergence of novel quantum orders that are absent in conventional semiconductors and the 2-DEG formed at a LaAlO3/SrTiO3 interface—a structure in which superconductivity and spin–orbit coupling can coexist—is a promising platform to develop devices for spintronics and topological electronics. However, field-effect control of the properties of this interface at the nanoscale remains challenging. Here we show that a quantum point contact can be formed in a LaAlO3/SrTiO3 interface through electrostatic confinement of the 2-DEG using a split gate. Our device exhibits a quantized conductance due to ballistic transport in a controllable number of one-dimensional conducting channels. Under a magnetic field, the direct observation of the Zeeman splitting between spin-polarized bands allows the determination of the Landé g-factor, whose value differs strongly from that of the free electrons. Through source–drain voltage measurements, we also performed a spectroscopic investigation of the 3d energy levels inside the quantum point contact. The LaAlO3/SrTiO3 quantum point contact could potentially be used as a spectrometer to probe Majorana states in an oxide 2-DEG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic description of the QPC device.
Fig. 2: Ballistic transport and conductance quantization.
Fig. 3: Spectroscopy of the QPC sub-bands.
Fig. 4: Zeeman splitting and spin-polarized sub-bands under a magnetic field.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Google Scholar 

  2. Stern, A. & Lindner, N. H. Topological quantum computation—from basic concepts to first experiments. Science 339, 1179–1184 (2013).

    Google Scholar 

  3. DasSarma, S., Freedman, M. & Nayak., C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).

    Google Scholar 

  4. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Google Scholar 

  5. Finck, A. D. K., Van Harlingen, D. J., Mohseni, P. K., Jung, K. & Li, X. Anomalous modulation of a zero-bias peak in a hybrid nanowire–superconductor device. Phys. Rev. Lett. 110, 126406 (2013).

    Google Scholar 

  6. Churchill, H. O. H. et al. Superconductor–nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 241401(R) (2013).

    Google Scholar 

  7. Zhang, H. et al. Quantized Majorana conductance. Nature 556, 74–79 (2018).

    Google Scholar 

  8. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Google Scholar 

  9. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Google Scholar 

  10. Hurand, S. et al. Field-effect control of superconductivity and Rashba spin–orbit coupling in top-gated LaAlO3/SrTiO3 devices. Sci. Rep. 5, 12751 (2015).

    Google Scholar 

  11. Stornaiuolo, D. et al. Weak localization and spin–orbit interaction in side-gate field effect devices at the LaAlO3/SrTiO3 interface. Phys. Rev. B 90, 235426 (2014).

    Google Scholar 

  12. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 56, 624–627 (2008).

    Google Scholar 

  13. Valentinis, D. Modulation of the superconducting critical temperature due to quantum confinement at the LaAlO3/SrTiO3 interface. Phys. Rev. B 96, 094518 (2017).

    Google Scholar 

  14. Singh, G. et al. Competition between electron pairing and phase coherence in superconducting interfaces. Nat. Commun. 9, 407 (2018).

    Google Scholar 

  15. Singh, G. et al. Gap suppression at a Lifshitz transition in a multi-condensate superconductor. Nat. Mater. 18, 948–954 (2019).

    Google Scholar 

  16. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Google Scholar 

  17. Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin–orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Google Scholar 

  18. Singh, G. et al. Effect of disorder on superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 interfaces. Phys. Rev. B 96, 024509 (2017).

    Google Scholar 

  19. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    Google Scholar 

  20. Vaz, D. C. et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 18, 1187–1193 (2019).

    Google Scholar 

  21. Fu., L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Google Scholar 

  22. Stornaiuolo, D. et al. Signatures of unconventional superconductivity in the LaAlO3/SrTiO3 two-dimensional system. Phys. Rev. B 95, 140502(R) (2017).

    Google Scholar 

  23. Kuerten, L. et al. In-gap states in superconducting LaAlO3/SrTiO3 interfaces observed by tunneling spectroscopy. Phys. Rev. B 96, 014513 (2017).

    Google Scholar 

  24. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Google Scholar 

  25. Wimmer, M., Akhmerov, A. R., Dahlhaus, J. P. & Beenakker., C. W. J. Quantum point contact as a probe of a topological superconductor. New J. Phys. 13, 053016 (2011).

    Google Scholar 

  26. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Google Scholar 

  27. Rossler, C. et al. Transport properties of clean quantum point contacts. New J. Phys. 13, 113006 (2011).

    Google Scholar 

  28. Salluzzo, M. et al. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 102, 166804 (2009).

    Google Scholar 

  29. Berner, G. et al. Direct k-space mapping of the electronic structure in an oxide–oxide interface. Phys. Rev. Lett. 110, 247601 (2013).

    Google Scholar 

  30. Stornaiuolo, D. et al. In-plane electronic confinement in superconducting LaAlO3/SrTiO3 nanostructures. Appl. Phys. Lett. 101, 222601 (2012).

    Google Scholar 

  31. Buttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B 41, 7906(R) (1990).

    Google Scholar 

  32. Biscaras, J. et al. Limit of the electrostatic doping in two-dimensional electron gases of LaXO3(X = Al,Ti) /SrTiO3. Sci. Rep. 4, 6788 (2014).

    Google Scholar 

  33. Kirczenow, G. Theory of the conductance of ballistic quantum channels. Solid State Commun. 68, 715–718 (1988).

    Google Scholar 

  34. Thierschmann, H. et al. Transport regimes of a split gate superconducting quantum point contact in the two-dimensional LaAlO3/SrTiO3 superfluid. Nat. Commun. 9, 2276 (2018).

    Google Scholar 

  35. Prawiroatmodjo, G. E. D. K. et al. Transport and excitations in a negative-U quantum dot at the LaAlO3/SrTiO3 interface. Nat. Commun. 8, 395 (2017).

    Google Scholar 

  36. Kouwenhoven, L. P. et al. Nonlinear conductance of quantum point contacts. Phys. Rev. B 39, 8040 (1989).

    Google Scholar 

  37. Patel, N. K. et al. Properties of a ballistic quasi-one-dimensional constriction in a parallel high magnetic field. Phys. Rev. B 44, 10973 (1991).

    Google Scholar 

  38. Glazman, L. I. & Khaetskii, A. V. Nonlinear quantum conductance of a point contact. JETP Lett. 48, 591–595 (1988).

    Google Scholar 

  39. Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

    Google Scholar 

  40. Annadi, A. et al. Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3 nanowires. Nano Lett. 18, 4473–4481 (2018).

    Google Scholar 

  41. Martin, T. P. et al. Enhanced Zeeman splitting in Ga0.25In0.75 as quantum point contacts. Appl. Phys. Lett. 93, 012105 (2008).

    Google Scholar 

  42. Cancellieri, C. et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).

    Google Scholar 

  43. Kim, M., Kozuka, Y., Bell, C., Hikita, Y. & Hwang, H. Y. Intrinsic spin–orbit coupling in superconducting δ-doped SrTiO3 heterostructures. Phys. Rev. B 86, 085121 (2012).

    Google Scholar 

  44. Herranz, G. et al. Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 quantum wells by selective orbital occupancy. Nat. Commun. 6, 6028 (2015).

    Google Scholar 

  45. Tekman, E. & Ciraci, S. Theoretical study of transport through a quantum point contact. Phys. Rev. B 43, 7145–7169 (1991).

    Google Scholar 

  46. Debray, P. et al. All-electric quantum point contact spin-polarizer. Nat. Nanotechnol. 4, 759–764 (2009).

    Google Scholar 

  47. Ngo, A. T., Debray, P. & Ulloa, S. E. Lateral spin–orbit interaction and spin polarization in quantum point contacts. Phys. Rev. B 81, 115328 (2010).

    Google Scholar 

  48. Kohda, M. et al. Spin–orbit induced electronic spin separation in semiconductor nanostructures. Nat. Commun. 3, 1082 (2012).

    Google Scholar 

Download references

Acknowledgements

We acknowledge M. Aprili, A. Caviglia, A. Akhmerov, R. Citro, M. Grilli, S. Caprara and L. Benfatto for stimulating discussions. This work was supported by the French RENATECH network (French national nanofabrication platform), the Région Ile-de-France in the framework of C’Nano IdF, OXYMORE and Sesame programs, by CNRS through a Projet International de Coopération Scientifique (PICS) programme and by the Agence Nationale de la Recherche (ANR) Projet de Recherche Collaborative (PRC) (QUANTOP). We acknowledge funding received from the project Quantox of QuantERA ERA-NET Cofund in Quantum Technologies (Grant Agreement no. 731473) implemented within the European Union’s Horizon 2020 Program. The authors also acknowledge the European Cooperation in Science and Technology (COST) project Nanoscale coherent hybrid devices for superconducting quantum technologies Action CA16218.

Author information

Authors and Affiliations

Authors

Contributions

A.J. and G.S. performed the measurements under the supervision of N.B. Samples were fabricated by E.L. and D.C.V. under the supervision of A.B. and M.B. Nanofabrication processes were performed by A.J. and C.U. A.J., G.S., C.F.-P., J.L. and N.B. carried out the analysis of the results. A.J. and N.B. wrote the Article with the help of J.L. M.S. and M.B. All the authors contributed to discussions of the results and commented on the final manuscript.

Corresponding author

Correspondence to N. Bergeal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5, Figs. 1–4 and refs. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouan, A., Singh, G., Lesne, E. et al. Quantized conductance in a one-dimensional ballistic oxide nanodevice. Nat Electron 3, 201–206 (2020). https://doi.org/10.1038/s41928-020-0383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-0383-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing