Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A guide to precise measurements of isotope abundance by ESI-Orbitrap MS

Abstract

Stable isotopes of carbon, hydrogen, nitrogen, oxygen and sulfur are widespread in nature. Nevertheless, their relative abundance is not the same everywhere. This is due to kinetic isotope effects in enzymes and other physical principles such as equilibrium thermodynamics. Variations in isotope ratios offer unique insights into environmental pollution, trophic relationships in ecology, metabolic disorders and Earth history including climate history. Although classical isotope ratio mass spectrometry (IRMS) techniques still struggle to access intramolecular information like site-specific isotope abundance, electrospray ionization–Orbitrap mass spectrometry can be used to achieve precise and accurate intramolecular quantification of isotopically substituted molecules (‘isotopocules’). This protocol describes two procedures. In the first one, we provide a step-by-step beginner’s guide for performing multi-elemental, intramolecular and site-specific stable isotope analysis in unlabeled polar solutes by direct infusion. Using a widely available calibration solution, isotopocules of trifluoroacetic acid and immonium ions from the model peptide MRFA are quantified. In the second approach, nitrate is used as a simple model for a flow injection routine that enables access to a diverse range of naturally occurring isotopic signatures in inorganic oxyanions. Each procedure takes 2–3 h to complete and requires expertise only in general mass spectrometry. The workflows use optimized Orbitrap IRMS data-extraction and -processing software and are transferable to various analytes amenable to soft ionization, including metabolites, peptides, drugs and environmental pollutants. Optimized mass spectrometry systems will enable intramolecular isotope research in many areas of biology.

Key points

  • Carbon, hydrogen, nitrogen, oxygen and sulfur have naturally occurring stable isotopes. Variations in their relative distribution within molecules can provide information relevant to environmental biology, metabolism, food and drug origins and climate history.

  • This protocol describes how to use electrospray ionization–Orbitrap mass spectrometry to achieve precise and accurate molecular quantification of isotopically substituted molecules (‘isotopocules’). It serves as a citable reference for optimized Orbitrap IRMS data-extraction and -processing software.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Like a keystone in a bridge, ESI-Orbitrap IRMS protocols connect MS techniques and instrumentation between the life sciences and geosciences.
Fig. 2: Basic measurement principles of ESI-Orbitrap IRMS.
Fig. 3: Workflow of isotope ratio data processing.
Fig. 4: Overview of presented procedures.
Fig. 5: Adapting the presented protocols to new analytes and research contexts.
Fig. 6: Proposed broad categories to assess the robustness of emerging ESI-Orbitrap IRMS workflows.
Fig. 7: Mass spectrum of TFA in the scan range specified in Procedure 1.
Fig. 8: Mass spectrum of immonium ions from amino acids in MRFA in the scan range specified in Procedure 1.
Fig. 9: Mass spectrum of nitrate in the scan range specified in Procedure 2.
Fig. 10: Shot-noise plots for the isotopocule ratios 13C/M0 (green) and 18O/M0 (orange) of TFA.
Fig. 11: Replicate analysis of isotopocule ratios from immonium ions created from the MRFA peptide.
Fig. 12: Results of nitrate isotopocule ratio analysis with non-optimal ion source settings.

Similar content being viewed by others

Data availability

The raw data supporting the findings of this study have been deposited to the MassIVE repositories with accession codes MSV000093222 (Procedure 1) and MSV000093223 (Procedure 2). Source data, data processing scripts and output plots and tables are available via a GitHub repository at github.com/isoverse/2023_kantnerova_et_al. Source data are provided with this paper.

Code availability

The isoorbi R package can be found at isoorbi.isoverse.org, github.com/isoverse/isoorbi and cloud.r-project.org/package=isoorbi. The IsoXL demo GUI can be found at isoorbi.isoverse.org/articles/isoxl_demo.html.

References

  1. Brenna, J. T. Natural intramolecular isotope measurements in physiology: elements of the case for an effort toward high-precision position-specific isotope analysis. Rapid Commun. Mass Spectrom. 15, 1252–1262 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Eiler, J. M. The isotopic anatomies of molecules and minerals. Annu. Rev. Earth Planet. Sci. 41, 411–441 (2013).

    Article  CAS  Google Scholar 

  3. Gilbert, A. The organic isotopologue frontier. Annu. Rev. Earth Planet. Sci. 49, 435–464 (2021).

    Article  CAS  Google Scholar 

  4. Hinrichs, K.-U., Eglinton, G., Engel, M. H. & Summons, R. E. Exploiting the multivariate isotopic nature of organic compounds. Geochem., Geophys., Geosyst. 2, 1052 (2001).

    Article  Google Scholar 

  5. Piper, T., Geyer, H., Nieschlag, E., Bally, L. & Thevis, M. Carbon isotope ratios of endogenous steroids found in human serum—method development, validation, and reference population-derived thresholds. Anal. Bioanal. Chem. 413, 5655–5667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guyader, S. et al. Combination of 13C and 2H SNIF-NMR isotopic fingerprints of vanillin to control its precursors. Flavour Fragr. J. 34, 133–144 (2019).

    Article  CAS  Google Scholar 

  7. O’Brien, D. M. Stable isotope ratios as biomarkers of diet for health research. Annu. Rev. Nutr. 35, 565–594 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kaiser, J. & Röckmann, T. Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2. Rapid Commun. Mass Spectrom. 22, 3997–4008 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Neubauer, C. et al. Discovering nature’s fingerprints: isotope ratio analysis on bioanalytical mass spectrometers. J. Am. Soc. Mass Spectrom. 34, 525–537 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Murray, K. K. et al. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1515–1609 (2013).

    Article  CAS  Google Scholar 

  11. Christen, A. Atmospheric measurement techniques to quantify greenhouse gas emissions from cities. Urban Clim. 10, 241–260 (2014).

    Article  Google Scholar 

  12. Fry, B., Carter, J. F., Yamada, K., Yoshida, N. & Juchelka, D. Position‐specific 13C/12C analysis of amino acid carboxyl groups – automated flow‐injection analysis based on reaction with ninhydrin. Rapid Commun. Mass Spectrom. 32, 992–1000 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akoka, S. & Remaud, G. S. NMR-based isotopic and isotopomic analysis. Prog. Nucl. Magn. Reson. Spectrosc. 120–121, 1–24 (2020).

    Article  PubMed  Google Scholar 

  14. Neubauer, C. et al. Towards measuring growth rates of pathogens during infections by D2O-labeling lipidomics. Rapid Commun. Mass Spectrom. 32, 2129–2140 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Neubauer, C. et al. Scanning the isotopic structure of molecules by tandem mass spectrometry. Int. J. Mass Spectrom. 434, 276–286 (2018).

    Article  CAS  Google Scholar 

  16. Eiler, J. et al. Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. Int. J. Mass Spectrom. 422, 126–142 (2017).

    Article  CAS  Google Scholar 

  17. Hilkert, A. et al. Exploring the potential of electrospray-Orbitrap for stable isotope analysis using nitrate as a model. Anal. Chem. 93, 9139–9148 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Gharibi, H. et al. Proteomics-compatible Fourier Transform isotopic ratio mass spectrometry of polypeptides. Anal. Chem. 94, 15048–15056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neubauer, C. et al. Stable isotope analysis of intact oxyanions using electrospray quadrupole-Orbitrap mass spectrometry. Anal. Chem. 92, 3077–3085 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Abelson, P. H. & Hoering, T. C. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc. Natl Acad. Sci. USA 47, 623–632 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fronza, G., Fuganti, C., Schmidt, H. L. & Werner, R. A. The δ18O-value of the p-OH group of L-tyrosine permits the assignment of its origin to plant or animal sources. Eur. Food Res. Technol. 215, 55–58 (2002).

    Article  CAS  Google Scholar 

  22. Eiler, J. M. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262, 309–327 (2007).

    Article  CAS  Google Scholar 

  23. Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Angel, T. E., Naylor, B. C., Price, J. C., Evans, C. & Szapacs, M. Improved sensitivity for protein turnover quantification by monitoring immonium ion isotopologue abundance. Anal. Chem. 91, 9732–9740 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on Orbitraps. Anal. Chem. 89, 5940–5948 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Llufrio, E. M., Cho, K. & Patti, G. J. Systems-level analysis of isotopic labeling in untargeted metabolomic data by X13CMS. Nat. Protoc. 14, 1970–1990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Granger, J. & Wankel, S. D. Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of environmental nitrogen cycling. Proc. Natl Acad. Sci. USA 113, E6391–E6400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mueller, E. P., Sessions, A. L., Sauer, P. E., Weiss, G. M. & Eiler, J. M. Simultaneous, high-precision measurements of δ2H and δ13C in nanomole quantities of acetate using electrospray ionization-quadrupole-Orbitrap mass spectrometry. Anal. Chem. 94, 1092–1100 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Hofmann, A. E. et al. Using Orbitrap mass spectrometry to assess the isotopic compositions of individual compounds in mixtures. Int. J. Mass Spectrom. 457, 116410 (2020).

    Article  CAS  Google Scholar 

  30. Csernica, T., Bhattacharjee, S. & Eiler, J. Accuracy and precision of ESI-Orbitrap-IRMS observations of hours to tens of hours via reservoir injection. Int. J. Mass Spectrom. 490, 117084 (2023).

    Article  CAS  Google Scholar 

  31. Peng, Y., Wang, Z. & Bao, H. Oxygen isotope analysis of phosphate by Electrospray Orbitrap mass spectrometry. AGU Fall Meet. Abstr. 2022, V32B-0080 (2022).

    Google Scholar 

  32. Gharibi, H. et al. Abnormal (hydroxy)proline deuterium content redefines hydrogen chemical mass. J. Am. Chem. Soc. 144, 2484–2487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilkes, E. B. et al. Position-specific carbon isotope analysis of serine by gas chromatography/Orbitrap mass spectrometry, and an application to plant metabolism. Rapid Commun. Mass Spectrom. 36, e9347 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Cesar, J., Eiler, J., Dallas, B., Chimiak, L. & Grice, K. Isotope heterogeneity in ethyltoluenes from Australian condensates, and their stable carbon site-specific isotope analysis. Org. Geochem. 135, 32–37 (2019).

    Article  CAS  Google Scholar 

  35. Zeichner, S. S. et al. Methods and limitations of stable isotope measurements via direct elution of chromatographic peaks using gas chromatography-Orbitrap mass spectrometry. Int. J. Mass Spectrom. 477, 116848 (2022).

    Article  CAS  Google Scholar 

  36. MacCoss, M. J., Toth, M. J. & Matthews, D. E. Evaluation and optimization of ion-current ratio measurements by selected-ion-monitoring mass spectrometry. Anal. Chem. 73, 2976–2984 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Kharchenko, A., Vladimirov, G., Heeren, R. M. A. & Nikolaev, E. N. Performance of Orbitrap mass analyzer at various space charge and non-ideal field conditions: simulation approach. J. Am. Soc. Mass Spectrom. 23, 977–987 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Gorshkov, M. V., Fornelli, L. & Tsybin, Y. O. Observation of ion coalescence in Orbitrap Fourier transform mass spectrometry. Rapid Commun. Mass Spectrom. 26, 1711–1717 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Grinfeld, D. et al. Space-charge dynamics in Orbitrap mass spectrometers. Int. J. Mod. Phys. A 34, 1942007 (2019).

    Article  CAS  Google Scholar 

  40. Wang, Y., Sessions, A. L., Nielsen, R. J. & Goddard, W. A. Equilibrium 2H/1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations. Geochim. Cosmochim. Acta 73, 7060–7075 (2009).

    Article  CAS  Google Scholar 

  41. Silverman, S. N. et al. Practical considerations for amino acid isotope analysis. Org. Geochem. 164, 104345 (2022).

    Article  CAS  Google Scholar 

  42. Claesen, J., Rockwood, A., Gorshkov, M. & Valkenborg, D. The isotope distribution: a rose with thorns. Mass Spectrom. Rev. https://doi.org/10.1002/mas.21820 (2023).

  43. Taylor, P. J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem. 38, 328–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Skrzypek, G. et al. Minimum requirements for publishing hydrogen, carbon, nitrogen, oxygen and sulfur stable-isotope delta results (IUPAC Technical Report). Pure Appl. Chem. 94, 1249–1255 (2022).

    Article  CAS  Google Scholar 

  45. Makarov, A., Denisov, E. & Lange, O. Performance evaluation of a high-field Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1391–1396 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.K. was supported by the Swiss National Science Foundation (Project No. P500PN_206702). Parts of this protocol build on work enabled by a grant from the National Science Foundation (Award no. 2041539) to S.K. and C.N. We thank J. K. Böhlke for fruitful discussions about referencing of stable-isotope data and access to reference materials and K. Aizikov for guidance on programming IsoX. We also thank B. Davidheiser, A. Angert, N. Bernet, H. Hayen, R. Marks, S. Ono and L. Yu for their critical feedback on the draft manuscript and software.

Author information

Authors and Affiliations

Authors

Contributions

All co-authors conceived, designed and developed the protocol. K.K., N.K. and C.N. performed the experiments, analyzed the data and wrote the manuscript. K.K., N.K., C.N. and S.K. prepared the data analysis scripts and software. D.J., A.H. and S.K. edited the manuscript. All co-authors read, commented on and accepted the final manuscript.

Corresponding author

Correspondence to Cajetan Neubauer.

Ethics declarations

Competing interests

The authors declare the following competing financial interest(s). A.H. and D.J. are employees of Thermo Fisher Scientific GmbH, which manufactures Orbitrap mass spectrometers as well as gas-source isotope ratio mass spectrometers. N.K. is a PhD student at the University of Münster and is conducting his doctoral thesis employed as a PhD student/R&D scientist at Thermo Fisher Scientific GmbH on Orbitrap-based isotope ratio measurements. C.N. is a paid independent scientific consultant to Thermo Fisher Scientific Inc. for ESI-Orbitrap mass spectrometer–based isotope ratio measurements.

Peer review

Peer review information

Nature Protocols thanks Amy Hofmann, Yongbo Peng, Matthias Pilecky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Eiler, J. et al. Int. J. Mass Spectrom. 422, 126–142 (2017): https://doi.org/10.1016/j.ijms.2017.10.002

Neubauer, C. et al. Int. J. Mass Spectrom. 434, 276–286 (2018): https://doi.org/10.1016/j.ijms.2018.08.001

Hilkert, A. et al. Anal. Chem. 93, 9139–9148 (2021): https://doi.org/10.1021/acs.analchem.1c00944

Jang, C. et al. Cell 173, 822–837 (2018): https://doi.org/10.1016/j.cell.2018.03.055

Neubauer, C. et al. J. Am. Soc. Mass Spectrom. 34, 525–537 (2023): https://doi.org/10.1021/jasms.2c00363

Extended data

Extended Data Fig. 1 Screenshot of a sequence file.

This example shows the sequence to analyze nitrate by using the described flow injection method (USGS35: standard; USGS32: sample). Injections of USGS35 at the beginning of the sequence for equilibration are not shown.

Extended Data Fig. 2

Structure of the isotopologs.tsv file for TFA.

Extended Data Fig. 3

Structure of the isotopologs.tsv file for immonium ions from MRFA.

Extended Data Fig. 4 Screenshot of a RAW file.

The screenshot is from the FreeStyle software, showing the signal intensity (top) and the mass spectrum (bottom) for the flow injection analysis of nitrate during the stable signal plateau.

Extended Data Fig. 5

Structure of the isotopologs.tsv file for nitrate.

Extended Data Fig. 6 Shot-noise plots for TFA.

a and b, Data for the isotopocule ratios 13C/M0 (a) and 18O/M0 (b). The data were obtained with two AGC target settings that resulted in different ITs: AGC target of 104 with IT = 0.03 ms (green, suboptimal) and AGC target of 106 with IT = 0.75 ms (orange, optimal). The optimal settings result in better precision (relative standard error, data points) within the same time, compared to the suboptimal settings. The lines depict the theoretical shot-noise limit.

Source data

Extended Data Fig. 7 Shot-noise plots for TFA.

a and b, Data for the isotopocule ratios 13C/M0 (a) and 18O/M0 (b). The data were obtained with two Orbitrap resolution settings: 120,000 (green, suboptimal) and 15,000 (orange, optimal). The optimal settings result in better precision (relative standard error, data points) within the same time, compared to the suboptimal settings. The lines depict the theoretical shot-noise limit.

Source data

Extended Data Fig. 8 Shot-noise plots for isotopocule ratios of immonium ions created from the MRFA peptide.

a–d, Alanine (a), arginine (b), methionine (c) and phenylalanine (d). The plots show decreasing relative standard error (the points) during the analysis time, which follows the theoretical shot-noise limit (lines). The offset between the individual isotopocules is based on their relative abundance (13C/12C has the highest isotopic abundance ratio, whereas 2H/1H has the lowest).

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Supplementary Tables 1–11, Supplementary Figs. 1–21 and Supplementary Data.

Reporting Summary

Supplementary Data

A spreadsheet showing the implementation of alternative ways to do the one-point calibration of δ values.

Source data

Source Data Fig. 10

Shot-noise data for 13C- and 18O-isotopocules of TFA.

Source Data Fig. 11

Extracted ion currents for four amino acid immonium ions and ratios of 13C/M0 for every replicate.

Source Data Fig. 12

Extracted ion currents for nitrate injections, ratios of 18O/M0 during the injections and ratios of 18O/M0 for every injection and d18O.

Source Data Extended Data Fig. 6

Shot-noise data for 13C- and 18O-isotopocules of TFA with different AGC target settings.

Source Data Extended Data Fig. 7

Shot-noise data for 13C- and 18O-isotopocules of TFA with different Orbitrap resolution settings.

Source Data Extended Data Fig. 8

Shot-noise data for immonium ions from the MRFA peptide.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantnerová, K., Kuhlbusch, N., Juchelka, D. et al. A guide to precise measurements of isotope abundance by ESI-Orbitrap MS. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00981-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research