Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detection of colinear blocks and synteny and evolutionary analyses based on utilization of MCScanX

Abstract

As different taxa evolve, gene order often changes slowly enough that chromosomal ‘blocks’ with conserved gene orders (synteny) are discernible. The MCScanX toolkit (https://github.com/wyp1125/MCScanX) was published in 2012 as freely available software for the detection of such ‘colinear blocks’ and subsequent synteny and evolutionary analyses based on genome-wide gene location and protein sequence information. Owing to its simplicity and high efficiency for colinear block detection, MCScanX provides a powerful tool for conducting diverse synteny and evolutionary analyses. Moreover, the detection of colinear blocks has been embraced as an integral step for pangenome graph construction. Here, new application trends of MCScanX are explored, striving to better connect this increasingly used tool to other tools and accelerate insight generation from exponentially growing sequence data. We provide a detailed protocol that covers how to install MCScanX on diverse platforms, tune parameters, prepare input files from data from the National Center for Biotechnology Information, run MCScanX and its visualization and evolutionary analysis tools, and connect MCScanX with external tools, including MCScanX-transposed, Circos and SynVisio. This protocol is easily implemented by users with minimal computational background and is adaptable to new data of interest to them. The data and utility programs for this protocol can be obtained from http://bdx-consulting.com/mcscanx-protocol.

Key points

  • During evolution, chromosomes are dynamically reorganized by duplication, inversion and translocation. Comparative analysis of genomes is empowered by identifying homologous genes that remain in their ancestral positions (colinearity). The MCScanX software package aids evolutionary studies by facilitating the detection of colinearity blocks, in particular, enabling alignments of multiple chromosomes (or segments).

  • MCScanX generates easy-to-read output files and has built-in visualization tools for easy representation of evolutionary insights.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the use of MCScanX and external tools for colinear block detection, synteny visualization and evolutionary analyses.
Fig. 2: Synteny visualization by using downstream tools from the MCScanX package.
Fig. 3: Comparison of genomic circle plots generated by circle_plotter of MCScanX and Circos.
Fig. 4: Visualizing synteny among multiple genomes by using SynVisio based on the MCScanX result.
Fig. 5: Visualization of the synonymous (Ks) substitution rate distributions of colinear genes in different genomes.
Fig. 6: Comparison of gene duplication modes among closely related Arabidopsis taxa.
Fig. 7: Identification of transposed duplications in the T. cacao genome by using MCScanX-transposed.
Fig. 8: Analysis of gene family evolution by using MCScanX.

Similar content being viewed by others

Data availability

Users can download the reference genome sequences and gene annotations of this study from Phytozome 13 (https://phytozome-next.jgi.doe.gov) and NCBI genome (https://www.ncbi.nlm.nih.gov/datasets/genome). Small-scale testing data for MCScanX are available under the ‘data’ folder of the MCScanX package. The data and programs for this protocol are wrapped as a ZIP file named ‘MCScanX_protocol.zip’, which is available at http://bdx-consulting.com/mcscanx-protocol.

Code availability

MCScanX is available at https://github.com/wyp1125/MCScanX. MCScanX-transposed is available at https://github.com/wyp1125/MCScanX-transposed. Programs especially for this protocol are available within the ‘MCScanX_protocol.zip’ file, which is available at http://bdx-consulting.com/mcscanx-protocol.

References

  1. Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Tang, H. B. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944–1954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, X. Y. et al. Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice. BMC Bioinforma. 7, 447 (2006).

    Article  Google Scholar 

  4. Myers, P. Z. Synteny: inferring ancestral genomes. Nat. Educ. 1, 47 (2008).

    Google Scholar 

  5. Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowers, J. E., Chapman, B. A., Rong, J. K. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Tang, H. B., Bowers, J. E., Wang, X. Y. & Paterson, A. H. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc. Natl Acad. Sci. USA 107, 472–477 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Freeling, M. et al. Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res. 18, 1924–1937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pevzner, P. & Tesler, G. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 13, 37–45 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jun, J., Mandoiu, I. I. & Nelson, C. E. Identification of mammalian orthologs using local synteny. BMC Genomics 10, 630 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tekaia, F. Inferring orthologs: open questions and perspectives. Genomics Insights 9, 17–28 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zheng, X. H., Lu, F., Wang, Z. Y., Hoover, J. & Mural, R. Using shared genomic synteny and shared protein functions to enhance the identification of orthologous gene pairs. Bioinformatics 21, 703–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. f. Plant Biol. 60, 433–453 (2009).

    Article  CAS  Google Scholar 

  14. Guo, H. et al. Gene duplication and genetic innovation in cereal genomes. Genome Res. 29, 261–269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hakes, L., Pinney, J. W., Lovell, S. C., Oliver, S. G. & Robertson, D. L. All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biol. 8, R209 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, Z. et al. Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc. Natl Acad. Sci. USA 115, 4713–4718 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, C. et al. Illegitimate recombination between homeologous genes in wheat genome. Front. Plant Sci. 11, 1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, X. Y., Tang, H. B., Bowers, J. E. & Paterson, A. H. Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Res. 19, 1026–1032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y., Ficklin, S. P., Wang, X., Feltus, F. A. & Paterson, A. H. Large-scale gene relocations following an ancient genome triplication associated with the diversification of core eudicots. PLoS One 11, e0155637 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y., Li, J. & Paterson, A. H. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29, 1458–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Qiao, X. et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 20, 38 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y. P. et al. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. Plos One 6, e28150 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bandi, V., Gutwin, C. Interactive exploration of genomic conservation. In Proceedings of the 46th Graphics Interface Conference 2020 (Waterloo, 2020).

  26. Chen, C. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20, 3643–3646 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lallemand, T., Leduc, M., Landes, C., Rizzon, C. & Lerat, E. An overview of duplicated gene detection methods: why the duplication mechanism has to be accounted for in their choice. Genes (Basel) 11, 1046 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Drillon, G., Carbone, A. & Fischer, G. SynChro: a fast and easy tool to reconstruct and visualize synteny blocks along eukaryotic chromosomes. PLoS One 9, e92621 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Xu, Y. et al. VGSC: a web-based vector graph toolkit of genome synteny and collinearity. Biomed. Res. Int. 2016, 7823429 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Kolishovski, G. et al. The JAX Synteny Browser for mouse-human comparative genomics. Mamm. Genome 30, 353–361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lovell, J. T. et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat. Commun. 9, 5213 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marchant, D. B. et al. Dynamic genome evolution in a model fern. Nat. Plants 8, 1038–1051 (2021).

    Article  Google Scholar 

  35. Lovell, J. T. et al. Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nat. Commun. 12, 4125 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song, J. M. et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, T. et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat. Genet. 54, 1553–1563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tao, Y. et al. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat. Plants 7, 766–773 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.H.P. appreciates funding from the National Science Foundation (NSF: DBI 0849896, MCB 0821096 and MCB 1021718) and from a Regents Professorship from the University System of Georgia. H.T. is supported by funding from the National Key Research and Development Program (2021YFF1000104). X.W. is supported by funding from the China Natural Science Foundation program (32070669). P.V.J. is supported by the National Institute on Alcohol Abuse and Alcoholism under award number Z01AA000135, the National Institute of Nursing Research and the Rockefeller University Heilbrunn Nurse Scholar Award. P.V.J. is supported by the Office of Workforce Diversity and the Office of Workforce Diversity, National Institutes of Health Distinguished Scholar Program.

Author information

Authors and Affiliations

Authors

Contributions

A.H.P. conceived the project. A.H.P. and P.V.J. guided the project. X.W. and H.T. developed early versions of the genome alignment algorithms. Y.W. improved on algorithms and developed the MCScanX protocol. Y.S. performed the experiments. Y.W., P.V.J. and A.H.P. drafted the manuscript. All authors contributed to the final writing and editing of the manuscript.

Corresponding authors

Correspondence to Paule V. Joseph or Andrew H. Paterson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ingo Ebersberger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Tang, H. B. et al. Genome Res. 18, 1944–1954 (2008): https://doi.org/10.1101/gr.080978.108

Wang, Y. et al. Nucleic Acids Res. 40, e49 (2012): https://doi.org/10.1093/nar/gkr1293

Wang, Y. et al. PLoS One 11, e0155637 (2016): https://doi.org/10.1371/journal.pone.0155637

Supplementary information

Supplementary Table 1

Supplementary Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tang, H., Wang, X. et al. Detection of colinear blocks and synteny and evolutionary analyses based on utilization of MCScanX. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00968-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing