Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation

Abstract

Protein lipidation is one of the most widespread post-translational modifications (PTMs) found in nature, regulating protein function, structure and subcellular localization. Lipid transferases and their substrate proteins are also attracting increasing interest as drug targets because of their dysregulation in many disease states. However, the inherent hydrophobicity and potential dynamic nature of lipid modifications makes them notoriously challenging to detect by many analytical methods. Chemical proteomics provides a powerful approach to identify and quantify these diverse protein modifications by combining bespoke chemical tools for lipidated protein enrichment with quantitative mass spectrometry–based proteomics. Here, we report a robust and proteome-wide approach for the exploration of five major classes of protein lipidation in living cells, through the use of specific chemical probes for each lipid PTM. In-cell labeling of lipidated proteins is achieved by the metabolic incorporation of a lipid probe that mimics the specific natural lipid, concomitantly wielding an alkyne as a bio-orthogonal labeling tag. After incorporation, the chemically tagged proteins can be coupled to multifunctional ‘capture reagents’ by using click chemistry, allowing in-gel fluorescence visualization or enrichment via affinity handles for quantitative chemical proteomics based on label-free quantification (LFQ) or tandem mass-tag (TMT) approaches. In this protocol, we describe the application of lipid probes for N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation in multiple cell lines to illustrate both the workflow and data obtained in these experiments. We provide detailed workflows for method optimization, sample preparation for chemical proteomics and data processing. A properly trained researcher (e.g., technician, graduate student or postdoc) can complete all steps from optimizing metabolic labeling to data processing within 3 weeks. This protocol enables sensitive and quantitative analysis of lipidated proteins at a proteome-wide scale at native expression levels, which is critical to understanding the role of lipid PTMs in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background: types of lipid PTMs covered and the corresponding lipid probes.
Fig. 2: Schematic overview of the procedures presented.
Fig. 3: Procedure 1: in-gel fluorescence visualization of lipid probe–labeled proteins.
Fig. 4: Procedure 2: identification and quantification of lipid PTMs by chemical proteomics.
Fig. 5: Anticipated results: visualization of protein lipidation by using the presented lipid probes.
Fig. 6: Anticipated results: visualizing target engagement of lipid transferases via metabolic labeling with lipid probes.
Fig. 7: Anticipated results: identifying and quantifying target engagement of lipid transferase inhibitors by using chemical proteomics.

Similar content being viewed by others

Data availability

The gel lanes depicted in Figs. 5 and 6 are shown uncropped in Supplementary Figs. 1 and 2. The MS proteomics data used for Fig. 7 have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD022490.

Code availability

MaxQuant and Perseus are freely available from https://www.maxquant.org.

References

  1. Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K. & Wu, X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem. Biol. 25, 817–831 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lanyon-Hogg, T., Faronato, M., Serwa, R. A. & Tate, E. W. Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends Biochem. Sci. 42, 566–581 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Hentschel, A., Zahedi, R. P. & Ahrends, R. Protein lipid modifications—more than just a greasy ballast. Proteomics 16, 759–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Garner, A. L. & Janda, K. D. cat-ELCCA: a robust method to monitor the fatty acid acyltransferase activity of ghrelin O-acyltransferase (GOAT). Angew. Chem. Int. Ed. Engl. 49, 9630–9634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goncalves, V. et al. A fluorescence-based assay for N-myristoyltransferase activity. Anal. Biochem. 421, 342–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lanyon-Hogg, T. et al. Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase. Anal. Biochem. 490, 66–72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lanyon-Hogg, T. et al. Microfluidic mobility shift assay for real-time analysis of peptide N-palmitoylation. SLAS Discov. 22, 418–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lanyon-Hogg, T. et al. Acylation-coupled lipophilic induction of polarisation (Acyl-cLIP): a universal assay for lipid transferase and hydrolase enzymes. Chem. Sci. 10, 8995–9000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kakugawa, S. et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519, 187–192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Won, S. J. et al. Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). ACS Chem. Biol. 11, 3374–3382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, D. et al. Crystal structure of a membrane-bound O-acyltransferase. Nature 562, 286–290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rana, M. S. et al. Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science 359, eaao6326 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kuchay, S. et al. GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nat. Struct. Mol. Biol. 26, 628–636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dian, C. et al. High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation. Nat. Commun. 11, 1132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, Y., Benz, T. L. & Long, S. B. Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT. Science 372, 1215–1219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tate, E. W., Kalesh, K. A., Lanyon-Hogg, T., Storck, E. M. & Thinon, E. Global profiling of protein lipidation using chemical proteomic technologies. Curr. Opin. Chem. Biol. 24, 48–57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thinon, E. et al. Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat. Commun. 5, 4919 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Daf Duluc, L. et al. Tipifarnib prevents development of hypoxia-induced pulmonary hypertension. Cardiovasc. Res. 113, 276–287 (2017).

    Article  CAS  Google Scholar 

  19. Mousnier, A. et al. Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus. Nat. Chem. 10, 599–606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heal, W. P., Wickramasinghe, S. R., Leatherbarrow, R. J. & Tate, E. W. N-Myristoyl transferase-mediated protein labeling in vivo. Org. Biomol. Chem. 6, 2308–2315 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Wright, M. H., Heal, W. P., Mann, D. J. & Tate, E. W. Protein myristoylation in health and disease. J. Chem. Biol. 3, 19–35 (2010).

    Article  PubMed  Google Scholar 

  22. Chamberlain, L. H. & Shipston, M. J. The physiology of protein S-acylation. Physiol. Rev. 95, 341–376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodgers, U. R. et al. Characterization of hedgehog acyltransferase inhibitors identifies a small molecule probe for hedgehog signaling by cancer cells. ACS Chem. Biol. 11, 3256–3262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Storck, E. M. et al. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat. Chem. 11, 552–561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ciepla, P. et al. New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish. Chem. Sci. 5, 4249–4259 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Rioux, V. et al. Exogenous myristic acid acylates proteins in cultured rat hepatocytes. J. Nutr. Biochem. 13, 66–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Taguchi, Y. & Schätzl, H. M. Small-scale Triton X-114 extraction of hydrophobic proteins. Bio Protoc. 4, e1139 (2014).

    PubMed  Google Scholar 

  28. Drisdel, R. C. & Green, W. N. Labeling and quantifying sites of protein palmitoylation. Biotechniques 36, 276–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Forrester, M. T. et al. Site-specific analysis of protein S-acylation by resin-assisted capture. J. Lipid Res. 52, 393–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blanc, M. et al. SwissPalm: protein palmitoylation database. F1000Res 4, 261 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Devabhaktuni, A. et al. TagGraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat. Biotechnol. 37, 469–479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heal, W. P., Wright, M. H., Thinon, E. & Tate, E. W. Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. Nat. Protoc. 7, 105–117 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Charron, G. et al. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 131, 4967–4975 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Thinon, E., Morales-Sanfrutos, J., Mann, D. J. & Tate, E. W. N-Myristoyltransferase inhibition induces ER-stress, cell cycle arrest, and apoptosis in cancer cells. ACS Chem. Biol. 11, 2165–2176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kallemeijn, W. W. et al. Validation and invalidation of chemical probes for the human N-myristoyltransferases. Cell Chem. Biol. 26, 892–900.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demetriadou, A. et al. Mouse Stbd1 is N-myristoylated and affects ER-mitochondria association and mitochondrial morphology. J. Cell Sci. 130, 903–915 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlott, A. C. et al. Structure-guided identification of resistance breaking antimalarial N-myristoyltransferase inhibitors. Cell Chem. Biol. 26, 991–1000.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goya Grocin, A., Serwa, R. A., Morales Sanfrutos, J., Ritzefeld, M. & Tate, E. W. Whole proteome profiling of N-myristoyltransferase activity and inhibition using sortase A. Mol. Cell Proteomics 18, 115–126 (2019).

    Article  PubMed  Google Scholar 

  39. Tapodi, A. et al. BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQP0 water permeability. Exp. Eye Res. 185, 107585 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright, M. H. et al. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat. Chem. 6, 112–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Wright, M. H. et al. Global analysis of protein N-myristoylation and exploration of N-myristoyltransferase as a drug target in the neglected human pathogen Leishmania donovani. Chem. Biol. 22, 342–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wright, M. H., Paape, D., Price, H. P., Smith, D. F. & Tate, E. W. Global profiling and inhibition of protein lipidation in vector and host stages of the sleeping sickness parasite Trypanosoma brucei. ACS Infect. Dis. 2, 427–441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Serwa, R. A., Abaitua, F., Krause, E., Tate, E. W. & O'Hare, P. Systems analysis of protein fatty acylation in herpes simplex virus-infected cells using chemical proteomics. Chem. Biol. 22, 1008–1017 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schlott, A. C., Holder, A. A. & Tate, E. W. N-Myristoylation as a drug target in malaria: exploring the role of N-myristoyltransferase substrates in the inhibitor mode of action. ACS Infect. Dis. 4, 449–457 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Broncel, M. et al. Myristoylation profiling in human cells and zebrafish. Data Brief 4, 379–383 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Broncel, M. et al. Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development. Angew. Chem. Int. Ed. Engl. 54, 5948–5951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rangan, K. J., Yang, Y. Y., Charron, G. & Hang, H. C. Rapid visualization and large-scale profiling of bacterial lipoproteins with chemical reporters. J. Am. Chem. Soc. 132, 10628–10629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Charlton, T. M., Kovacs-Simon, A., Michell, S. L., Fairweather, N. F. & Tate, E. W. Quantitative lipoproteomics in Clostridium difficile reveals a role for lipoproteins in sporulation. Chem. Biol. 22, 1562–1573 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Won, S. J. & Martin, B. R. Temporal profiling establishes a dynamic S-palmitoylation cycle. ACS Chem. Biol. 13, 1560–1568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schroeder, G. N. et al. Legionella pneumophila effector LpdA is a palmitoylated phospholipase D virulence factor. Infect. Immun. 83, 3989–4002 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalinin, A. et al. Expression of mammalian geranylgeranyltransferase type-II in Escherichia coli and its application for in vitro prenylation of Rab proteins. Protein Expr. Purif. 22, 84–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen, U. T. et al. Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat. Chem. Biol. 5, 227–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Suazo, K. F. et al. Metabolic labeling of prenylated proteins using alkyne-modified isoprenoid analogues. Curr. Protoc. Chem. Biol. 10, e46 (2018).

    Google Scholar 

  55. Greaves, J. et al. Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry. Proc. Natl Acad. Sci. USA 114, E1365–E1374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin, B. R. Chemical approaches for profiling dynamic palmitoylation. Biochem. Soc. Trans. 41, 43–49 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, Y., Yang, X. & Verhelst, S. H. Comparative analysis of click chemistry mediated activity-based protein profiling in cell lysates. Molecules 18, 12599–12608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Werner, T. et al. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal. Chem. 86, 3594–3601 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. End, D. W. et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 61, 131–137 (2001).

    CAS  PubMed  Google Scholar 

  60. Lanyon-Hogg, T. et al. Photochemical probe identification of a small-molecule inhibitor binding site in hedgehog acyltransferase (HHAT)*. Angew. Chem. Int. Ed. Engl. 60, 13542–13547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rafiee, M. R. et al. Protease-resistant streptavidin for interaction proteomics. Mol. Syst. Biol. 16, e9370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Percher, A., Thinon, E. & Hang, H. Mass-tag labeling using acyl-PEG exchange for the determination of endogenous protein S-fatty acylation. Curr. Protoc. Protein Sci. 89, 14.17.1–14.17.11 (2017).

    Article  Google Scholar 

  64. McMichael, T. M. et al. The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. J. Biol. Chem. 292, 21517–21526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lynes, E. M. et al. Palmitoylation is the switch that assigns calnexin to quality control or ER Ca2+ signaling. J. Cell Sci. 126, 3893–3903 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Haig for assistance with MS, R. Serwa for aiding in setup of the proteomics protocols and R. Singh for proofreading. The Francis Crick Institute Cell Services are acknowledged for providing cell lines and STR verification. This work was supported by grants from The Royal Society (Newton International Fellowship grant NF161582 to W.W.K.), the European Commission (Marie Sklodowska Curie Individual Fellowship grant 752165 to W.W.K. and Marie Sklodowska Curie Intra European Fellowship to J.M.-S. and E.W.T.), the Royal Thai Government scholarship (PhD studentship to N.P.), the Imperial College London Institute of Chemical Biology EPSRC Centre for Doctoral Training (grant EP/F500416/1 to P.C.), EPSRC (Impact Acceleration Account grant PS1042 to W.W.K. and E.W.T.) and Cancer Research UK (C29637/A21451 and C29637/A20183 to E.W.T.). Work in the E.W.T. laboratories is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001057 and FC001097), the UK Medical Research Council (FC001057 and FC001097) and the Wellcome Trust (FC001057 and FC001097).

Author information

Authors and Affiliations

Authors

Contributions

W.W.K., N.P., T.L.-H. and E.W.T. were responsible for conceptualization. W.W.K., N.P., A.G.G. and J.M.-S. were responsible for methodology. W.W.K., T.L.H., N.P., A.G.G., J.M.-S. and P.C. were responsible for investigation. E.W.T. was responsible for resources. W.W.K. and T.L.H. wrote the original draft. All authors reviewed and edited the manuscript. W.W.K. was responsible for visualization. E.W.T. provided supervision.

Corresponding author

Correspondence to Edward W. Tate.

Ethics declarations

Competing interests

E.W.T. is a director and shareholder of Myricx Pharma Ltd. and an inventor on a patent application describing NMT inhibitors including IMP-1088 (Bell, A. S., Tate, E. W., Leatherbarrow, R. J., Hutton, J. A., Brannigan, J. A. Compounds and their use as inhibitors of N-myristoyl transferase. PCT In Appl. (2017) WO 2017001812).

Additional information

Peer review information Nature Protocols thanks Matthew Pratt, Tamara Kinzer-Ursem and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kallemeijn, W. W. et al. Cell Chem. Biol. 26, 892–900.e4 (2019): https://doi.org/10.1016/j.chembiol.2019.03.006

Storck, E. M. et al. Nat. Chem. 11, 552–561 (2019): https://doi.org/10.1038/s41557-019-0237-6

Mousnier, A. et al. Nat. Chem. 10, 599–606 (2018): https://doi.org/10.1038/s41557-018-0039-2

Broncel, M. et al. Angew. Chem. Int. Ed. Engl. 54, 5948–5951 (2015): https://doi.org/10.1002/anie.201500342

Thinon, E. et al. Nat. Commun. 5, 4919 (2014): https://doi.org/10.1038/ncomms5919

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallemeijn, W.W., Lanyon-Hogg, T., Panyain, N. et al. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation. Nat Protoc 16, 5083–5122 (2021). https://doi.org/10.1038/s41596-021-00601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00601-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing