Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Application of CHyMErA Cas9-Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening

Abstract

CRISPR-based forward genetic screening represents a powerful approach for the systematic characterization of gene function. Recent efforts have been directed toward establishing CRISPR-based tools for the programmable delivery of combinatorial genetic perturbations, most of which are mediated by a single nuclease and the expression of structurally identical guide backbones from two promoters. In contrast, we have developed CHyMErA (Cas hybrid for multiplexed editing and screening applications), which is based on the co-expression of Cas9 and Cas12a nucleases in conjunction with a hybrid guide RNA (hgRNA) engineered by the fusion of Cas9 and Cas12a guides and expressed from a single U6 promoter. CHyMErA is suitable for the high-throughput deletion of genetic segments including the excision of individual exons. Furthermore, CHyMErA enables the concomitant targeting of two or more genes and can thus be used for the systematic mapping of genetic interactions in mammalian cells. CHyMErA can also be applied for the perturbation of paralogous gene pairs, thereby allowing the capturing of phenotypic roles that would otherwise be masked because of genetic redundancy. Here, we provide instructions for the cloning of hgRNA screening libraries and individual hgRNA constructs and offer guidelines for designing and performing combinatorial pooled genetic screens using CHyMErA. Starting with the generation of Cas9- and Cas12a-expressing cell lines, CHyMErA screening can be implemented within 15–20 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHyMErA combinatorial genome-editing platform.
Fig. 2: Experimental workflow of CHyMErA screens.
Fig. 3: Anticipated results for Cas9/Cas12a cell line characterization, hgRNA cloning, sequencing library production and screen performance assessment.
Fig. 4: hgRNA cloning process.
Fig. 5: Generation of NGS sequencing libraries.

Similar content being viewed by others

Data availability

All plasmids and CHyMErA screening libraries described in this protocol are available from Addgene (http://www.addgene.org/), and a detailed list of the respective Addgene reagent numbers is provided in the reagent section of this protocol. Published example data sets21 can be accessed via Gene Expression Omnibus GSE144281.

Code availability

Published codes for dual-targeting, genetic interaction and exon-deletion scoring are available on GitHub (https://github.com/HenryWard/chymera-scoring; https://github.com/BlencoweLab/CHyMErA_exonDelScoring)21. An accompanying protocol describes in detail computational approaches for the processing of Illumina sequencing data and the mapping of genetic interaction using CHyMErA combinatorial screens65.

References

  1. Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haley, B. & Roudnicky, F. Functional genomics for cancer drug target discovery. Cancer Cell 38, 31–43 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Doench, J. G. Am i ready for CRISPR? A user’s guide to genetic screens. Nat. Rev. Genet. 19, 67–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ford, K., McDonald, D. & Mali, P. Functional genomics via CRISPR–Cas. J. Mol. Biol. 431, 48–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Costanzo, M. et al. Global genetic networks and the genotype-to-phenotype relationship. Cell 177, 85–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Gonatopoulos-Pournatzis, T. et al. Genome-wide CRISPR-Cas9 interrogation of splicing networks reveals a mechanism for recognition of autism-misregulated neuronal microexons. Mol. Cell 72, 510–524.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23, 758–771.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, R. J. et al. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat. Genet. 49, 193–203 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Haney, M. S. et al. Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat. Genet. 50, 1716–1727 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian, R. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron 104, 239–255.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mair, B. et al. Essential gene profiles for human pluripotent stem cells identify uncharacterized genes and substrate dependencies. Cell Rep. 27, 599–615.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Olivieri, M. et al. A genetic map of the response to DNA damage in human cells. Cell 182, 481–496.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horlbeck, M. A. et al. Mapping the genetic landscape of human cells. Cell 174, 953–967.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Najm, F. J. et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calabrese, C. et al. Genomic basis for RNA alterations in cancer. Nature 578, 129–136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wessels, H. H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, D. et al. Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox control points dependent on the KEAP1-NRF2 regulatory axis. Mol. Cell 69, 699–708.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boettcher, M. et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36, 170–178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, J. et al. Pooled library screening with multiplexed Cpf1 library. Nat. Commun. 10, 3144 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dede, M., McLaughlin, M., Kim, E. & Hart, T. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens. Genome Biol. 21, 262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chow, R. D. et al. In vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens. Nat. Methods 16, 405–408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gier, R. A. et al. High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nat. Commun. 11, 3455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. ter Brake, O. et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol. Ther. 16, 557–564 (2008).

    Article  PubMed  CAS  Google Scholar 

  47. Sack, L. M., Davoli, T., Xu, Q., Li, M. Z. & Elledge, S. J. Sources of error in mammalian genetic screens. G3 (Bethesda) 6, 2781–2790 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  48. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vidigal, J. A. & Ventura, A. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nat. Commun. 6, 8083 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Brown, K. R., Mair, B., Soste, M. & Moffat, J. CRISPR screens are feasible in TP53 wild‐type cells. Mol. Syst. Biol. 15, e8679 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Ihry, R. J. et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Bowden, A. R. et al. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. Elife 9, e55325 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 5, e19760 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tak, Y. E. et al. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat. Methods 14, 1163–1166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hanna, R. E. & Doench, J. G. A case of mistaken identity. Nat. Biotechnol. 36, 802–804 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Feldman, D., Singh, A., Garrity, A. J. & Blainey, P. C. Lentiviral co-packaging mitigates the effects of intermolecular recombination and multiple integrations in pooled genetic screens. Preprint at bioRxiv https://doi.org/10.1101/262121 (2018).

  63. Hegde, M., Strand, C., Hanna, R. E. & Doench, J. G. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens. PLoS One 13, e0197547 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 (Bethesda) 7, 2719–2727 (2017).

    Article  CAS  Google Scholar 

  65. Ward, H. N. et al. Analysis of combinatorial CRISPR screens with the Orthrus scoring pipeline. Nat. Protoc. https://doi.org/10.1038/s41596-021-00596-0 (2021).

  66. Aregger, M. et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat. Metab. 2, 499–513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Jost, M. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell 68, 210–223.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mair, B. et al. High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat. Biomed. Eng. 3, 796–805 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Wroblewska, A. et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell 175, 1141–1155.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aregger, M., Chandrashekhar, M., Tong, A. H. Y., Chan, K. & Moffat, J. Pooled lentiviral CRISPR-Cas9 screens for functional genomics in mammalian cells. Methods Mol. Biol. 1869, 169–188 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. de Kegel, B. & Ryan, C. J. Paralog buffering contributes to the variable essentiality of genes in cancer cell lines. PLoS Genet 15, e1008466 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Listgarten, J. et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2, 38–47 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Perez, A. R. et al. GuideScan software for improved single and paired CRISPR guide RNA design. Nat. Biotechnol. 35, 347–349 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, H. K. et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Tycko, J. et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat. Commun. 10, 4063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Perez, A. R., Sala, L., Perez, R. K. & Vidigal, J. A. Computational correction of off-targeting for CRISPR-Cas9 essentiality screens. Preprint at bioRxiv https://doi.org/10.1101/809970 (2020).

Download references

Acknowledgements

We thank J. Moffat, B. J. Blencowe for their support and members of the Moffat and Blencowe laboratories at the University of Toronto for helpful discussions. We also thank H. Ward for valuable feedback and comments. Finally, we thank all members of the Gonatopoulos-Pournatzis group for their feedback. T.G.-P. is supported by the NIH Earl Stadtman Investigator Program and the NIH Distinguished Scholars Program.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and T.G.-P. wrote the manuscript with major contributions from K.X.

Corresponding authors

Correspondence to Michael Aregger or Thomas Gonatopoulos-Pournatzis.

Ethics declarations

Competing interests

A patent application (no. GB 1907733.8) describing the development and applications of CHyMErA is pending.

Additional information

Peer review information Nature Protocols thanks Randall J. Platt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Gonatopoulos-Pournatzis, T. et al. Nat. Biotechnol. 38, 638–648 (2020): https://doi.org/10.1038/s41587-020-0437-z

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aregger, M., Xing, K. & Gonatopoulos-Pournatzis, T. Application of CHyMErA Cas9-Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening. Nat Protoc 16, 4722–4765 (2021). https://doi.org/10.1038/s41596-021-00595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00595-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research