Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Making bioinspired 3D-printed autonomic perspiring hydrogel actuators

Abstract

To mitigate the adverse effects of elevated temperatures, conventional rigid devices use bulky radiators, heat sinks and fans to dissipate heat from sensitive components. Unfortunately, these thermoregulation strategies are incompatible with soft robots, a growing field of technology that, like biology, builds compliant and highly deformable bodies from soft materials to enable functional adaptability. Here, we design fluidic elastomer actuators that autonomically perspire at elevated temperatures. This strategy incurs operational penalties (i.e., decreased actuation efficiency and loss of hydraulic fluid) but provides for thermoregulation in soft systems. In this bioinspired approach, we 3D-print finger-like actuators from smart gels with embedded micropores that autonomically dilate and contract in response to temperature. During high-temperature operation, the internal hydraulic fluid flows through the dilated pores, absorbs heat and vaporizes. Upon cooling, the pores contract to restrict fluid loss and restore operation. To assess the thermoregulatory performance, this protocol uses non-invasive thermography to measure the local temperatures of the robot under varied conditions. A mathematical model based on Newton’s law of cooling quantifies the cooling performance and enables comparison between competing designs. Fabrication of the sweating actuator usually takes 3–6 h, depending on size, and can provide >100 W/kg of additional cooling capacity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioinspired 3D-printed hydrogel actuator.
Fig. 2: Characterization of smart pores.
Fig. 3: Robotic systems for performance testing.
Fig. 4
Fig. 5: Dynamic response of hydrogel pores.
Fig. 6: Performance of sweating actuators.
Fig. 7: Thermo-manipulation of grasped objects.

Similar content being viewed by others

Data availability

The data used in this protocol are available in the supporting primary research article, and the design files are accessible at https://doi.org/10.6084/m9.figshare.12964811.

Software availability

The MATLAB code used in this protocol can be found in the Supplementary Information.

References

  1. Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    Article  CAS  Google Scholar 

  2. Trivedi, D., Rahn, C. D., Kier, W. M. & Walker, I. D. Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 99–117 (2008).

    Article  Google Scholar 

  3. Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

    Article  Google Scholar 

  4. Laschi, C. & Cianchetti, M. Soft robotics: new perspectives for robot bodyware and control. Front. Bioeng. Biotechnol. 2, 3 (2014).

    Article  Google Scholar 

  5. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed. Engl. 50, 1890–1895 (2011).

    Article  CAS  Google Scholar 

  6. Iida, F. & Laschi, C. Soft robotics: challenges and perspectives. Procedia Compute. Sci. 7, 99–102 (2011).

    Article  Google Scholar 

  7. Highton, H. Perpetual motion. Nature 3, 368–369 (1871).

    Article  Google Scholar 

  8. Shepherd, R. F. et al. Using explosions to power a soft robot. Angew. Chem. Int. Ed. Engl. 52, 2892–2896 (2013).

    Article  CAS  Google Scholar 

  9. Marchese, A. D., Onal, C. D. & Rus, D. Towards a self-contained soft robotic fish: on-board pressure generation and embedded electro-permanent magnet valves. in Experimental Robotics Vol. 88 (eds. Desai, J. et al.) 41–54 (Springer, 2013).

  10. Bartlett, N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).

    Article  CAS  Google Scholar 

  11. Miriyev, A., Stack, K. & Lipson, H. Soft material for soft actuators. Nat. Commun. 8, 1–8 (2017).

    Article  CAS  Google Scholar 

  12. Yirmibeşoğlu, O. D., Oshiro, T., Olson, G., Palmer, C. & Mengüç, Y. Evaluation of 3D printed soft robots in radiation environments and comparison with molded counterparts. Front. Robot. AI 6, 40 (2019).

    Article  Google Scholar 

  13. Tolley, M. T. et al. A resilient, untethered soft robot. Soft Robot. 1, 213–223 (2014).

    Article  Google Scholar 

  14. Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011).

    Article  CAS  Google Scholar 

  15. Grady, J. M., Enquist, B. J., Dettweiler-Robinson, E., Wright, N. A. & Smith, F. A. Evidence for mesothermy in dinosaurs. Science 344, 1268–1272 (2014).

    Article  CAS  Google Scholar 

  16. Wright, P. Why do elephants flap their ears? Afr. Zool. 19, 266–269 (1984).

    Google Scholar 

  17. Farlow, J. O., Thompson, C. V. & Rosner, D. E. Plates of the dinosaur Stegosaurus: forced convection heat loss fins? Science 192, 1123–1125 (1976).

    Article  CAS  Google Scholar 

  18. Kotagama, P., Phadnis, A., Manning, K. C. & Rykaczewski, K. Rational design of soft, thermally conductive composite liquid‐cooled tubes for enhanced personal, robotics, and wearable electronics cooling. Adv. Mater. Technol. 4, 1800690 (2019).

    Article  CAS  Google Scholar 

  19. Morin, S. A. et al. Camouflage and display for soft machines. Science 337, 828–832 (2012).

    Article  CAS  Google Scholar 

  20. VII. Scala graduum caloris. Philos. Trans. R. Soc. Lond. 22, 824–829 (1701).

  21. Padilla, L. R. & Hilton, C. D. Canidae. in Fowler’s Zoo and Wild Animal Medicine Vol. 8 (eds. Miller, R. F. & Fowler, M. E.) 457–466 (Elsevier Saunders, 2015).

  22. Calder, W. A. & Schmidt-Nielsen, K. Temperature regulation and evaporation in the pigeon and the roadrunner. Am. J. Physiol. 213, 883–889 (1967).

    Article  CAS  Google Scholar 

  23. Dawson, W. R. Evaporative losses of water by birds. Comp. Biochem. Physiol. A Physiol. 71, 495–509 (1982).

    Article  CAS  Google Scholar 

  24. Dawson, M. E., Schell, A. M., Beers, J. R. & Kelly, A. Allocation of cognitive processing capacity during human autonomic classical conditioning. J. Exp. Psychol. Gen. 111, 273–295 (1982).

    Article  CAS  Google Scholar 

  25. Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).

    Article  Google Scholar 

  26. Ingram, D. Evaporative cooling in the pig. Nature 207, 415–416 (1965).

    Article  CAS  Google Scholar 

  27. Sawka, M. N., Wenger, C. B. & Pandolf, K. B. Thermoregulatory responses to acute exercise‐heat stress and heat acclimation. Compr. Physiol 14 (Suppl.), 157–185 (2011).

    Google Scholar 

  28. Johnson, J. & Proppe, D. Body fluid balance during heat stress in humans. in Handbook of Physiology, Section 4: Environmental Physiology (eds. Fregly, M. J. & Blatteis, C. M.) 189–214 (Oxford University Press, 1996).

  29. Hodgson, D. et al. Dissipation of metabolic heat in the horse during exercise. J. Appl. Physiol. 74, 1161–1170 (1993).

    Article  CAS  Google Scholar 

  30. Kalairaj, M. S., Banerjee, H., Lim, C. M., Chen, P.-Y. & Ren, H. Hydrogel-matrix encapsulated Nitinol actuation with self-cooling mechanism. RSC Adv. 9, 34244–34255 (2019).

    Article  Google Scholar 

  31. Kozuki, T. et al. Skeletal structure with artificial perspiration for cooling by latent heat for musculoskeletal humanoid kengoro. in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2135–2140 (IEEE, 2016).

  32. Asano, Y., Okada, K. & Inaba, M. Design principles of a human mimetic humanoid: humanoid platform to study human intelligence and internal body system. Sci. Robot. 2, eaaq0899 (2017).

    Article  Google Scholar 

  33. Mishra, A. K. et al. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 5, eaaz3918 (2020).

    Article  Google Scholar 

  34. Banerjee, H., Suhail, M. & Ren, H. Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics (Basel) 3, 15 (2018).

    Article  Google Scholar 

  35. Fan, H. & Gong, J. P. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules 53, 2769–2782 (2020).

    Article  CAS  Google Scholar 

  36. Wallin, T., Pikul, J. & Shepherd, R. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).

    Article  Google Scholar 

  37. Holback, H., Yeo, Y. & Park, K. Hydrogel swelling behavior and its biomedical applications. in Biomedical Hydrogels: Biochemistry, Manufacture and Medical Applications (ed. Rimmer, S.) 3–24 (Woodhead Publishing, 2011).

  38. Ebara, M. et al. Smart Biomaterials (Springer, 2014).

  39. Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 1–12 (2017).

    Article  Google Scholar 

  40. Ge, Q. et al. Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 6, 31110 (2016).

    Article  Google Scholar 

  41. Odent, J. et al. Highly elastic, transparent, and conductive 3D‐printed ionic composite hydrogels. Adv. Funct. Mater. 27, 1701807 (2017).

    Article  Google Scholar 

  42. Wallin, T. et al. Click chemistry stereolithography for soft robots that self-heal. J. Mater. Chem. B 5, 6249–6255 (2017).

    Article  CAS  Google Scholar 

  43. Peele, B. N., Wallin, T. J., Zhao, H. & Shepherd, R. F. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir. Biomim. 10, 055003 (2015).

    Article  Google Scholar 

  44. Hunter, J. Observations on Certain Parts of the Animal Economy (Lyon Public Library, 1792).

  45. Taylor, C. R. Strategies of temperature regulation: effect on evaporation in East African ungulates. Am. J. Physiol. 219, 1131–1135 (1970).

    Article  CAS  Google Scholar 

  46. Ohhashi, T., Sakaguchi, M. & Tsuda, T. Human perspiration measurement. Physiol. Meas. 19, 449–461 (1998).

    Article  CAS  Google Scholar 

  47. Kingston, J., Geor, R. & McCutcheon, L. Use of dew-point hygrometry, direct sweat collection, and measurement of body water losses to determine sweating rates in exercising horses. Am. J. Vet. Res. 58, 175–181 (1997).

    CAS  PubMed  Google Scholar 

  48. Flir E4 Brochure. https://www.flir.com/globalassets/imported-assets/document/ex-series-no-wifi-datasheet.pdf (2020).

  49. Bennett, J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit. Manuf. 18, 203–212 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mishra, A. K. P., Wenyang, P., Giannelis, E. P., Shepherd, R. F. & Wallin, T. J. Stl files for 3D printed Sweating actuators 09/17/2020 edn. https://figshare.com/articles/dataset/Stl_files_for_3D_printed_Sweating_actuators/12964811 (2020).

  51. ASTM International. Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry (ASTM International, 2011).

  52. Rajput, R. Heat and Mass Transfer in SI Units 98–99 (S. Chand, 2008).

  53. Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 2007).

  54. Nag, P. Engineering Thermodynamics (Tata McGraw-Hill Education, 2013).

Download references

Acknowledgements

This research was supported in part by the Office of Naval Research Young Investigator Program (N00014-17-1-2837). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875).

Author information

Authors and Affiliations

Authors

Contributions

A.K.M., W.P., and T.J.W. developed the protocol. E.P.G. and R.F.S. obtained resources to support this research effort. A.K.M. and T.J.W. generated figures and took the lead in writing the manuscript with support from W.P., E.P.G. and R.F.S.

Corresponding author

Correspondence to Thomas J. Wallin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Dacheng Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Mishra, A. et al. Sci. Robot. 5, eaaz3918 (2020): https://doi.org/10.1126/scirobotics.aaz3918

Supplementary information

Supplementary Information

MATLAB code and Supplementary Figs. 1–12.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Pan, W., Giannelis, E.P. et al. Making bioinspired 3D-printed autonomic perspiring hydrogel actuators. Nat Protoc 16, 2068–2087 (2021). https://doi.org/10.1038/s41596-020-00484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00484-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing