Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Determination of G-protein–coupled receptor oligomerization by molecular brightness analyses in single cells

Abstract

Oligomerization of membrane proteins has received intense research interest because of their importance in cellular signaling and the large pharmacological and clinical potential this offers. Fluorescence imaging methods are emerging as a valid tool to quantify membrane protein oligomerization at high spatial and temporal resolution. Here, we provide a detailed protocol for an image-based method to determine the number and oligomerization state of fluorescently labeled prototypical G-protein–coupled receptors (GPCRs) on the basis of small out-of-equilibrium fluctuations in fluorescence (i.e., molecular brightness) in single cells. The protocol provides a step-by-step procedure that includes instructions for (i) a flexible labeling strategy for the protein of interest (using fluorescent proteins, small self-labeling tags or bio-orthogonal labeling) and the appropriate controls, (ii) performing temporal and spatial brightness image acquisition on a confocal microscope and (iii) analyzing and interpreting the data, excluding clusters and intensity hot-spots commonly observed in receptor distributions. Although specifically tailored for GPCRs, this protocol can be applied to diverse classes of membrane proteins of interest. The complete protocol can be implemented in 1 month.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the procedure.
Fig. 2: Labeling strategies.
Fig. 3: Partial photobleaching experiments in reference constructs.
Fig. 4: Example of a temporal brightness experiment.
Fig. 5: Example of a spatial brightness experiment.
Fig. 6: Rational ROI selection.
Fig. 7: Labeling efficiency and 2D map of GPCR oligomerization behavior.
Fig. 8: Application of our approach to screen the efficiency of bio-orthogonal labeling of β2-AR.

Similar content being viewed by others

Data availability

The original data for the experiments shown in Figs. 38 are available as Source Data with this protocol. Source data are provided with this paper.

Code availability

The data analysis for this study was done by using our custom-made IgorPro routine available on GitHub (https://github.com/PaoloAnnibale/MolecularBrightness). Image analysis and conversion were performed by using ImageJ, freely available at https://imagej.nih.gov/ij/. The ImageJ Stowers brightness plugins are freely available at https://research.stowers.org/imagejplugins/.

References

  1. Sachs, J. N. & Engelman, D. M. Introduction to the membrane protein reviews: the interplay of structure, dynamics, and environment in membrane protein function. Annu. Rev. Biochem. 75, 707–712 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson, K., Sheets, E. D. & Simson, R. Revisiting the fluid mosaic model of membranes. Science 268, 1441–1442 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Klingenberg, M. Membrane protein oligomeric structure and transport function. Nature 290, 449–454 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Matthews, J. M. & Sunde, M. Dimers, oligomers, everywhere. Adv. Exp. Med. Biol. 747, 1–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Pin, J. P. & Bettler, B. Organization and functions of mGlu and GABA(B) receptor complexes. Nature 540, 60–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferre, S. et al. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66, 413–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Annibale, P. & Lohse, M. J. Spatial heterogeneity in molecular brightness. Nat. Methods 17, 273–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Möller, J. et al. Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nat. Chem. Biol. 16, 946–954 (2020).

    Article  PubMed  CAS  Google Scholar 

  14. Serfling, R. et al. Quantitative single-residue bioorthogonal labeling of G protein-coupled receptors in live cells. ACS Chem. Biol. 14, 1141–1149 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Işbilir, A. et al. Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proc. Natl Acad. Sci. USA 117, 29144–29154 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Chen, Y., Muller, J. D., So, P. T. C. & Gratton, E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qian, H. & Elson, E. L. Distribution of molecular aggregation by analysis of fluctuation moments. Proc. Natl Acad. Sci. USA 87, 5479–5483 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl Acad. Sci. USA 97, 3684–3689 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lan, T. H. et al. BRET evidence that β2 adrenergic receptors do not oligomerize in cells. Sci. Rep. 5, 10166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson, J. A., Lu, Y. Y., Van Deventer, J. A. & Tirrell, D. A. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 14, 774–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tarasova, N. I. et al. Visualization of G protein-coupled receptor trafficking with the aid of the green fluorescent protein. Endocytosis and recycling of cholecystokinin receptor type A. J. Biol. Chem. 272, 14817–14824 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Barak, L. S. et al. Internal trafficking and surface mobility of a functionally intact β2-adrenergic receptor-green fluorescent protein conjugate. Mol. Pharmacol. 51, 177–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Chalfie, M. GFP: lighting up life. Proc. Natl Acad. Sci. USA 106, 10073–10080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Cutrale, F. et al. Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. Nat. Protoc. 14, 616–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein, B. & Perelson, A. S. Equilibrium theory for the clustering of bivalent cell surface receptors by trivalent ligands. Application to histamine release from basophils. Biophys. J. 45, 1109–1123 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hofman, E. G. et al. Ligand-induced EGF receptor oligomerization is kinase-dependent and enhances internalization. J. Biol. Chem. 285, 39481–39489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serebryannyy, L. A. et al. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J. Cell Sci. 129, 3412–3425 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hebert, T. E. & Bouvier, M. Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem. Cell Biol. 76, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Maggio, R., Vogel, Z. & Wess, J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc. Natl Acad. Sci. USA 90, 3103–3107 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi, H., Picard, L. P., Schonegge, A. M. & Bouvier, M. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Nat. Protoc. 14, 1084–1107 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Mercier, J. F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. James, J. R., Oliveira, M. I., Carmo, A. M., Iaboni, A. & Davis, S. J. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods 3, 1001–1006 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Lohse, M. J. G protein-coupled receptors: too many dimers? Nat. Methods 3, 972–973 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Vilardaga, J. P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M. J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat. Biotechnol. 21, 807–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Nikolaev, V. O., Bunemann, M., Hein, L., Hannawacker, A. & Lohse, M. J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215–37218 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Benredjem, B. et al. Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response. Nat. Commun. 10, 4075 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kauk, M. & Hoffmann, C. Intramolecular and intermolecular FRET sensors for GPCRs - monitoring conformational changes and beyond. Trends Pharmacol. Sci. 39, 123–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Pisterzi, L. F. et al. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. J. Biol. Chem. 285, 16723–16738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fish, K. N. Total internal reflection fluorescence (TIRF) microscopy. Curr. Protoc. Cytom. Chapter 12, Unit 12.18 (2009).

  45. Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Felce, J. H. et al. Receptor quaternary organization explains G protein-coupled receptor family structure. Cell Rep. 20, 2654–2665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moerner, W. E. & Fromm, D. P. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003).

    Article  CAS  Google Scholar 

  48. Scarselli, M. et al. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J. 283, 1197–1217 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, X. et al. Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells. Nat. Protoc. 10, 2054–2063 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Calebiro, D. et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc. Natl Acad. Sci. USA 110, 743–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Sungkaworn, T. et al. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550, 543–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Puthenveedu, M. A. & von Zastrow, M. Cargo regulates clathrin-coated pit dynamics. Cell 127, 113–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Hern, J. A. et al. Formation and dissociation of M-1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl Acad. Sci. USA 107, 2693–2698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kasai, R. S. et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192, 463–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Post, S. R., Hilal-Dandan, R., Urasawa, K., Brunton, L. L. & Insel, P. A. Quantification of signalling components and amplification in the beta-adrenergic-receptor-adenylate cyclase pathway in isolated adult rat ventricular myocytes. Biochem. J. 311, 75–80 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hesselgesser, J. et al. Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J. Immunol. 160, 877–883 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N. & Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. FASEB J. 25, 2883–2897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Godin, A. G. et al. Revealing protein oligomerization and densities in situ using spatial intensity distribution analysis. Proc. Natl Acad. Sci. USA 108, 7010–7015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ward, R. J., Pediani, J. D., Godin, A. G. & Milligan, G. Regulation of oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor observed by spatial intensity distribution analysis. J. Biol. Chem. 290, 12844–12857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Digman, M. A., Dalal, R., Horwitz, A. F. & Gratton, E. Mapping the number of molecules and brightness in the laser scanning microscope. Biophys. J. 94, 2320–2332 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hinde, E. et al. Quantifying the dynamics of the oligomeric transcription factor STAT3 by pair correlation of molecular brightness. Nat. Commun. 7, 11047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Herrick-Davis, K., Grinde, E., Cowan, A. & Mazurkiewicz, J. E. Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol. Pharmacol. 84, 630–642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parmar, V. K., Grinde, E., Mazurkiewicz, J. E. & Herrick-Davis, K. Beta2-adrenergic receptor homodimers: role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. Biochim. Biophys. Acta Biomembr. 1859(9 Pt A), 1445–1455 (2016).

    PubMed  Google Scholar 

  65. Hink, M. A., Shah, K., Russinova, E., de Vries, S. C. & Visser, A. J. Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 94, 1052–1062 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Unruh, J. R. & Gratton, E. Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera. Biophys. J. 95, 5385–5398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nagy, P., Claus, J., Jovin, T. M. & Arndt-Jovin, D. J. Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc. Natl Acad. Sci. USA 107, 16524–16529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zamai, M. et al. Number and brightness analysis reveals that NCAM and FGF2 elicit different assembly and dynamics of FGFR1 in live cells. J. Cell Sci. 132, jcs220624 (2019).

    PubMed  Google Scholar 

  69. Eichel, K., Jullie, D. & von Zastrow, M. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat. Cell Biol. 18, 303–310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pediani, J. D., Ward, R. J., Godin, A. G., Marsango, S. & Milligan, G. Dynamic regulation of quaternary organization of the M-1 muscarinic receptor by subtype-selective antagonist drugs. J. Biol. Chem. 291, 13132–13146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Golebiewska, U., Johnston, J. M., Devi, L., Filizola, M. & Scarlata, S. Differential response to morphine of the oligomeric state of μ-opioid in the presence of δ-opioid receptors. Biochemistry 50, 2829–2837 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Dunsing, V. et al. Optimal fluorescent protein tags for quantifying protein oligomerization in living cells. Sci. Rep. 8, 10634 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Dalal, R. B., Digman, M. A., Horwitz, A. F., Vetri, V. & Gratton, E. Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode. Microsc. Res. Tech. 71, 69–81 (2008).

    Article  PubMed  Google Scholar 

  74. Kobilka, B. K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta 1768, 794–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bohme, I. & Beck-Sickinger, A. G. Illuminating the life of GPCRs. Cell Commun. Signal. 7, 16 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Daly, C. J. & McGrath, J. C. Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol. Ther. 100, 101–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Lohse, M. J., Nuber, S. & Hoffmann, C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol. Rev. 64, 299–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Naganathan, S., Ye, S., Sakmar, T. P. & Huber, T. Site-specific epitope tagging of G protein-coupled receptors by bioorthogonal modification of a genetically encoded unnatural amino acid. Biochemistry 52, 1028–1036 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Dorsch, S., Klotz, K. N., Engelhardt, S., Lohse, M. J. & Bunemann, M. Analysis of receptor oligomerization by FRAP microscopy. Nat. Methods 6, 225–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Emami-Nemini, A. et al. Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat. Protoc. 8, 1307–1320 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. Hoffmann, C. et al. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat. Methods 2, 171–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Kuder, K. & Kiec-Kononowicz, K. Fluorescent GPCR ligands as new tools in pharmacology. Curr. Med. Chem. 15, 2132–2143 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Magalhaes, A. C., Dunn, H. & Ferguson, S. S. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol. 165, 1717–1736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Al-Sabah, S., Adi, L., Bunemann, M. & Krasel, C. The effect of cell surface expression and linker sequence on the recruitment of arrestin to the GIP receptor. Front. Pharmacol. 11, 1271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schoneberg, T. et al. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol. Ther. 104, 173–206 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. Guan, X. M., Kobilka, T. S. & Kobilka, B. K. Enhancement of membrane insertion and function in a type IIIb membrane protein following introduction of a cleavable signal peptide. J. Biol. Chem. 267, 21995–21998 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Maurel, D. et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561–567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nikic, I. et al. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 53, 2245–2249 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Pandy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440–D446 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Işbilir, A. et al. Visualization of class A GPCR oligomerization by image-based fluorescence fluctuation spectroscopy. Preprint at bioRxiv https://doi.org/10.1101/240903 (2017).

  93. Arai, R., Ueda, H., Kitayama, A., Kamiya, N. & Nagamune, T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 14, 529–532 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Fricke, F., Beaudouin, J., Eils, R. & Heilemann, M. One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci. Rep. 5, 14072 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Latty, S. L. et al. Referenced single-molecule measurements differentiate between GPCR oligomerization states. Biophys. J. 109, 1798–1806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bhatia, S., Edidin, M., Almo, S. C. & Nathenson, S. G. Different cell surface oligomeric states of B7-1 and B7-2: implications for signaling. Proc. Natl Acad. Sci. USA 102, 15569–15574 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kraetke, O. et al. Dimerization of corticotropin-releasing factor receptor type 1 is not coupled to ligand binding. J. Recept. Signal Transduct. Res. 25, 251–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Teichmann, A. et al. The specific monomer/dimer equilibrium of the corticotropin-releasing factor receptor type 1 is established in the endoplasmic reticulum. J. Biol. Chem. 289, 24250–24262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moller, T. C. et al. Oligomerization of a G protein-coupled receptor in neurons controlled by its structural dynamics. Sci. Rep. 8, 10414 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Trullo, A., Corti, V., Arza, E., Caiolfa, V. R. & Zamai, M. Application limits and data correction in number of molecules and brightness analysis. Microsc. Res. Tech. 76, 1135–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Digman, M. A. et al. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J. 89, 1317–1327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. D’Agostino, R. B. & Stephens, M. A., eds. Goodness-Of-Fit Techniques (Marcel Dekker, 1986).

  103. Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nat. Methods 4, 319–321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jonas, K. C., Huhtaniemi, I. & Hanyaloglu, A. C. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes. Methods Cell Biol. 132, 55–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Serfling, R., Seidel, L., Bottke, T. & Coin, I. Optimizing the genetic incorporation of chemical probes into GPCRs for photo-crosslinking mapping and bioorthogonal chemistry in live mammalian cells. J. Vis. Exp. 134, 57069 (2018).

    Google Scholar 

  106. Herrick-Davis, K. & Mazurkiewicz, J. E. Fluorescence correlation spectroscopy and photon-counting histogram analysis of receptor-receptor interactions. Methods Cell Biol. 117, 181–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Stoneman, M. R. et al. A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nat. Methods 16, 493–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 15, 47–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Rizzo, M. A., Springer, G. H., Granada, B. & Piston, D. W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article  PubMed  CAS  Google Scholar 

  111. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Kremers, G. J., Goedhart, J., van Munster, E. B. & Gadella, T. W. Jr. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 45, 6570–6580 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Bajar, B. T. et al. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci. Rep. 6, 20889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shen, Y., Chen, Y., Wu, J., Shaner, N. C. & Campbell, R. E. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PloS ONE 12, e0171257 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) CRC 1423, project number 421152132, subproject C03 (to P.A. and M.J.L.); DFG Cluster of Excellence EXC2046 Math+ (to P.A. and M.J.L.); DFG CRC 1423, project number 421152132, subproject C05 (to I.C. and A.B.); the National Institutes of Health (R01-DA038882; to M.J.L.); the Elite Network Bavaria graduate program ‘Receptor Dynamics’ (to M.J.L.); and DFG Grant CO822/2-1 (to I.C.).

Author information

Authors and Affiliations

Authors

Contributions

A.I., R.S., J.M. and P.A. performed data collection and data analysis and developed the data acquisition and analysis procedure. A.I., A.B. and U.Z. developed the cloning procedure. P.A., A.G.B.-S., R.S. and U.Z. contributed analysis tools and materials used in the research. P.A. wrote the manuscript and initiated the research. A.B. and A.I. contributed to writing the manuscript. R.T., C.D.F., M.S. and M.J.L. contributed edits to the manuscript. P.A., I.C. and M.J.L. supervised the primary research. All authors reviewed the manuscript and approved the final article.

Corresponding authors

Correspondence to Martin J. Lohse or Paolo Annibale.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Andrew Clayton, Catherine Ann Royer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Serfling, R. et al. ACS Chem. Biol. 14, 1141–1149 (2019): https://doi.org/10.1021/acschembio.8b01115

Annibale, P. & Lohse, M. J. Nat. Methods 17, 273–275 (2020): https://doi.org/10.1038/s41592-020-0732-0

Möller, J. et al. Nat. Chem. Biol. 16, 946–954 (2020): https://doi.org/10.1038/s41589-020-0566-1

Işbilir, A. et al. Proc. Natl Acad. Sci. USA 117, 29144–29154: https://doi.org/10.1073/pnas.2013319117

Extended data

Extended Data Fig. 1 Use of fluorescent ligands to label receptor of interest.

Confocal image of the basolateral membrane of a HEK293-AD cell expressing the Y2-receptor C-terminally labeled with EYFP (left) and labeled with 1 μM TAMRA-Ahx(5-24)NPY (center) followed by washout. Right, Upon displacement with 10 μM unlabeled Ahx(5-24)NPY, the fluorescent ligand is almost entirely displaced within tens of seconds. Scale bar, 10 μm.

Extended Data Fig. 2 Microscope calibration.

a, Theoretical autocorrelation function (ACF) for a sample of 10 particles diffusing in 2D through a point spread function (PSF) with a waist of 0.3 μm and D = 0.1 μm2/s. The pixel dwell time should allow for an accurate recording of the fluctuations. A general guideline is for the dwell time to be ~10 times smaller than the decay time of the diffusing species. In this case, the decay time is of the order of 300 ms, so any pixel dwell time smaller than 1 ms would be a very safe choice. The characteristic dwell time used in our temporal brightness acquisitions (2.4 μs) is way below this value. However, because the associated frame time is of the order of 640 ms on the Leica microscope, we felt that this was the best compromise between an acceptable photon collection and a not-too-slow acquisition time (about >1 min for 100 frames). b, Apparent brightness B versus intensity scatter plot originating from a movie (256 × 256 pixels, 100 frames) of a homogeneous mixture of Alexa488 imaged in a 90% (wt/wt) glycerol/water solution, for increasing values of the laser power. c, Change of brightness (fold change) as a function of the increase in intensity (fold change). As the mean pixel intensity increases (almost linearly with the laser power), the mean brightness scales proportionally. The linear fit (constrained to 0), has a slope of 0.9, indicating that the increase in intensity is matched by a proportional increase in brightness, as expected. d, Example of a dark count histogram for the Leica SP8 HyD photon-counting detector and for the analog PMT, the latter superposed to Gaussian + exponential fits (black dashed lines) to determine calibration parameters (see Box 2).

Source data

Extended Data Fig. 3 Example of labeling efficiency quantification (Box 2).

a, Export dual-color movies from the Leica LAS X software as tiff multipage files. b, Run the N&B processing macro. It relies on a set of plugins developed by Jay Unruh at the Stowers Institute for Biomedical Research. The macro guides the user in a step-by-step fashion to convert the tiff images to 16 bits, apply a moving average detrend to remove effects from photobleaching (optional) and calculate the average intensity and brightness value for each pixel of the movie. c, As a result, the sum intensity image is displayed in parallel to the brightness versus intensity plot (highlighted here as B/S vs I/S plot). Note that this plugin also allows for processing images that were collected with an analog detector (in this case, Slope, Zero Variance and Offset need to be adjusted to the properties of the detector of interest. For a photon-counting acquisition, leave as indicated here). A cursor selection allows for selecting those pixels belonging to cluster in as a B/S vs I/S plot. These pixels are highlighted in red in the intensity image above. The x avg value provides the average intensity, while the y avg value provides the average brightness value extracted from the selected pixels. d, For each cell analyzed, these values can be noted and then exported in the software of choice (in this case, Excel), where the number of emitters for each channel (Cy3 versus EGFP) can be plotted as a scatter and fit to a line (constrained through the origin, because in the absence of detectable aspecific binding for EGFP = 0, we assume Cy3 = 0) to determine the labeling efficiency.

Supplementary information

Source data

Source Data Fig. 3

Tabulated brightness values for Fig. 3b,c

Source Data Fig. 4

Raw acquisition move used in Fig. 4c–h

Source Data Fig. 5

Spatial brightness acquisition for Fig. 5b–d

Source Data Fig. 6

Spatial brightness for Fig. 6a–c

Source Data Fig. 7

Tabulated brightness values for Fig. 7a,b

Source Data Fig. 8

Tabulated number values for Fig. 8a,b

Source Data Extended Data Fig. 2

Combined tiff file containing acquisition of dye in solution at 5% laser power (100 frames), 10% laser power (100 frames) and 20% laser power (100 frames). Dark acquisition with HyD (100 frames) and with PMT (100 frames)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işbilir, A., Serfling, R., Möller, J. et al. Determination of G-protein–coupled receptor oligomerization by molecular brightness analyses in single cells. Nat Protoc 16, 1419–1451 (2021). https://doi.org/10.1038/s41596-020-00458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00458-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing